The number line game

This Riddler puzzle is a game theory problem: how should each player play the game to maximize their own winnings?

Ariel, Beatrice and Cassandra — three brilliant game theorists — were bored at a game theory conference (shocking, we know) and devised the following game to pass the time. They drew a number line and placed \$1 on the 1, \$2 on the 2, \$3 on the 3 and so on to \$10 on the 10.

Each player has a personalized token. They take turns — Ariel first, Beatrice second and Cassandra third — placing their tokens on one of the money stacks (only one token is allowed per space). Once the tokens are all placed, each player gets to take every stack that her token is on or is closest to. If a stack is midway between two tokens, the players split that cash.

How will this game play out? How much is it worth to go first?

A grab bag of extra credits: What if the game were played not on a number line but on a clock, with values of \$1 to \$12? What if Desdemona, Eleanor and so on joined the original game? What if the tokens could be placed anywhere on the number line, not just the stacks?

Here are the details of how I approached the problem:
[Show Solution]

And here are the answers:
[Show Solution]

Rug quality control

This Riddler puzzle is about rug manufacturing. How likely are we to avoid defects if manufacture the rugs randomly?

A manufacturer, Riddler Rugs™, produces a random-pattern rug by sewing 1-inch-square pieces of fabric together. The final rugs are 100 inches by 100 inches, and the 1-inch pieces come in three colors: midnight green, silver, and white. The machine randomly picks a 1-inch fabric color for each piece of a rug. Because the manufacturer wants the rugs to look random, it rejects any rug that has a 4-by-4 block of squares that are all the same color. (Its customers don’t have a great sense of the law of large numbers, or of large rugs, for that matter.)

What percentage of rugs would we expect Riddler Rugs™ to reject? How many colors should it use in the rug if it wants to manufacture a million rugs without rejecting any of them?

Here is my solution:
[Show Solution]

A coin-flipping game

This Riddler puzzle involves a particular coin-flipping game. Here is the problem:

I flip a coin. If it’s heads, I’ve won the game. If it’s tails, then I have to flip again, now needing to get two heads in a row to win. If, on my second toss, I get another tails instead of a heads, then I now need three heads in a row to win. If, instead, I get a heads on my second toss (having flipped a tails on the first toss) then I still need to get a second heads to have two heads in a row and win, but if my next toss is a tails (having thus tossed tails-heads-tails), I now need to flip three heads in a row to win, and so on. The more tails you’ve tossed, the more heads in a row you’ll need to win this game.

I may flip a potentially infinite number of times, always needing to flip a series of N heads in a row to win, where N is T + 1 and T is the number of cumulative tails tossed. I win when I flip the required number of heads in a row.

What are my chances of winning this game? (A computer program could calculate the probability to any degree of precision, but is there a more elegant mathematical expression for the probability of winning?)

Here is my solution:
[Show Solution]

L-bisector

This post is about a geometry Riddler puzzle involving bisecting a shape using only a straightedge and a pencil. Here is the problem:

Say you have an “L” shape formed by two rectangles touching each other. These two rectangles could have any dimensions and they don’t have to be equal to each other in any way. (A few examples are shown below.)

Using only a straightedge and a pencil (no rulers, protractors or compasses), how can you draw a single straight line that cuts the L into two halves of exactly equal area, no matter what the dimensions of the L are? You can draw as many lines as you want to get to the solution, but the bisector itself can only be one single straight line.

Here is my solution:
[Show Solution]

Smudged secret messages

This Riddler is a twist on a classic problem: decoding equations! Here is the paraphrased problem:

The goal is to decode two equations. In each of them, every different letter stands for a different digit. But there is a minor problem in both equations. In the first equation, letters accidentally were smudged and are now unreadable. (These are represented with dashes below.) But we know that all 10 digits, 0 through 9, appear in the equation.

What digits belong to what letters, and what are the dashes? In the second equation, one of the letters in the equation is wrong. But we don’t know which one. Which is it?

Here is my detailed solution:
[Show Solution]

If you’re just interested in the answers, here they are:
[Show Solution]

Minimal road networks

This Riddler problem is about efficient road-building!

Consider four towns arranged to form the corners of a square, where each side is 10 miles long. You own a road-building company. The state has offered you \$28 million to construct a road system linking all four towns in some way, and it costs you \$1 million to build one mile of road. Can you turn a profit if you take the job?

Extra credit: How does your business calculus change if there were five towns arranged as a pentagon? Six as a hexagon? Etc.?

Here is a longer explanation:
[Show Solution]

Here is the solution with minimal explanation:
[Show Solution]

Counting coconuts

This Riddler problem is about divisibility… of coconuts!

Seven pirates wash ashore on a deserted island after their ship sinks. In order to survive, they gather as many coconuts as they can find and throw them into a central pile. As the sun sets, they all go to sleep.

One pirate wakes up in the middle of the night. Being the greedy person he is, this pirate decides to take some coconuts from the pile and hide them for himself. As he approaches the pile, though, he notices a monkey watching him. To keep the monkey quiet, the pirate tosses it one coconut from the pile. He then divides the rest of the pile into seven equally sized bunches and hides one of the bunches in the bushes. Finally, he recombines the remaining coconuts into a single pile and goes back to sleep. (Note that individual coconuts are very hard, and therefore indivisible.)

Later that night, a second pirate wakes up with the same idea. She tosses the monkey one coconut from the central pile, divides the pile into seven bunches, hides her bunch, recombines the rest, and goes back to sleep. After that, a third pirate wakes up and does the same thing. Then a fourth. Then a fifth, and so on until all seven pirates have hidden a share of the coconuts.

In the morning, the pirates look at the remaining central pile and notice that it has gotten quite small. They decide to split the pile into seven equal bunches and take one bunch each. (Note: The monkey does not get one this time.) If there were N coconuts in the pile originally, what is the smallest possible value of N?

Here is a short solution:
[Show Solution]

If you’d like to learn more about how to solve such problems (what is modular arithmetic anyway!?) then read on!
[Show Solution]

Nightmare Solitaire

This Riddler problem is a probability question about an old favorite: Solitaire!

While killing some time at your desk one afternoon, you fire up a new game of Solitaire (also called Klondike, and specifically the version where you deal out three cards from the deck at a time). But your boredom quickly turns to rage because your game is unplayable — you can flip through your deck, but you never have any legal moves! What are the odds?

Here is my solution:
[Show Solution]

Number shuffle

This is a number theory problem from the Riddler. Simple problem, not-so-simple solution!

Imagine taking a number and moving its last digit to the front. For example, 1,234 would become 4,123. What is the smallest positive integer such that when you do this, the result is exactly double the original number?

Here is my solution:
[Show Solution]

The Dodgeball duel

This is a game theory problem from the Riddler. Three dodgeball players, who survives?

Three expert dodgeballers engage in a duel — er, a “truel” — where they all pick up a ball simultaneously and attempt to hit one of the others. Any survivors then immediately start over, attempting to hit each other again. They are equally fast but unequally accurate. Name them Abbott, Bob and Costello. Each has an accuracy of a, b and c, respectively. That is, if Abbott aims at something, he hits it with probability a, Bob with probability b and Costello with probability c. The abilities of each player are known by the others. Let’s say Abbott is a perfect shot: a = 1. Suppose the players follow an optimal strategy, with the goal being survival. Which player, for every possible combination of Bob and Costello’s abilities (b and c), is favored to survive this truel?

Here is my solution:
[Show Solution]