The slow car chase

This week’s Fiddler is a problem about probability and a slow car chase!

You and your pursuer are stopped at traffic lights one block away from each other, as shown below. For both cars, it takes 1 minute to get to each subsequent light, and there is a 50-50 chance any light will be red upon arrival (independent of what happened previously). If a light is red, you must wait one minute before it turns green. What is the probability you will make it to the city limits without being caught by your pursuer?

Extra Credit
In the same scenario as before, imagine there are infinitely many lights. On average, how many minutes will it be until you are ultimately caught?

My solution:
[Show Solution]

Flipping your way to victory

This week’s Riddler Classic concerns a paradoxical coin-flipping game:

You have two fair coins, labeled A and B. When you flip coin A, you get 1 point if it comes up heads, but you lose 1 point if it comes up tails. Coin B is worth twice as much — when you flip coin B, you get 2 points if it comes up heads, but you lose 2 points if it comes up tails.

To play the game, you make a total of 100 flips. For each flip, you can choose either coin, and you know the outcomes of all the previous flips. In order to win, you must finish with a positive total score. In your eyes, finishing with 2 points is just as good as finishing with 200 points — any positive score is a win. (By the same token, finishing with 0 or −2 points is just as bad as finishing with −200 points.)

If you optimize your strategy, what percentage of games will you win? (Remember, one game consists of 100 coin flips.)

Extra credit: What if coin A isn’t fair (but coin B is still fair)? That is, if coin A comes up heads with probability p and you optimize your strategy, what percentage of games will you win?

Here is my solution:
[Show Solution]

Delirious ducks

This week’s Riddler Classic is about random walks on a lattice:

Two delirious ducks are having a difficult time finding each other in their pond. The pond happens to contain a 3×3 grid of rocks.

Every minute, each duck randomly swims, independently of the other duck, from one rock to a neighboring rock in the 3×3 grid — up, down, left or right, but not diagonally. So if a duck is at the middle rock, it will next swim to one of the four side rocks with probability 1/4. From a side rock, it will swim to one of the two adjacent corner rocks or back to the middle rock, each with probability 1/3. And from a corner rock, it will swim to one of the two adjacent side rocks with probability 1/2.

If the ducks both start at the middle rock, then on average, how long will it take until they’re at the same rock again? (Of course, there’s a 1/4 chance that they’ll swim in the same direction after the first minute, in which case it would only take one minute for them to be at the same rock again. But it could take much longer, if they happen to keep missing each other.)

Extra credit: What if there are three or more ducks? If they all start in the middle rock, on average, how long will it take until they are all at the same rock again?

Here is my solution:
[Show Solution]

The lucky derby

In the spirit of the Kentucky Derby, this Riddler puzzle is about a peculiar type of horse race.

The bugle sounds, and 20 horses make their way to the starting gate for the first annual Lucky Derby. These horses, all trained at the mysterious Riddler Stables, are special. Each second, every Riddler-trained horse takes one step. Each step is exactly one meter long. But what these horses exhibit in precision, they lack in sense of direction. Most of the time, their steps are forward (toward the finish line) but the rest of the time they are backward (away from the finish line). As an avid fan of the Lucky Derby, you’ve done exhaustive research on these 20 competitors. You know that Horse One goes forward 52 percent of the time, Horse Two 54 percent of the time, Horse Three 56 percent, and so on, up to the favorite filly, Horse Twenty, who steps forward 90 percent of the time. The horses’ steps are taken independently of one another, and the finish line is 200 meters from the starting gate.

Handicap this race and place your bets! In other words, what are the odds (a percentage is fine) that each horse wins?

Here is my full derivation (long!):
[Show Solution]

For the tl;dr, the answer is:
[Show Solution]

The deadly board game

This Riddler classic puzzle involves a combination of decision-making and probability.

While traveling in the Kingdom of Arbitraria, you are accused of a heinous crime. Arbitraria decides who’s guilty or innocent not through a court system, but a board game. It’s played on a simple board: a track with sequential spaces numbered from 0 to 1,000. The zero space is marked “start,” and your token is placed on it. You are handed a fair six-sided die and three coins. You are allowed to place the coins on three different (nonzero) spaces. Once placed, the coins may not be moved.

After placing the three coins, you roll the die and move your token forward the appropriate number of spaces. If, after moving the token, it lands on a space with a coin on it, you are freed. If not, you roll again and continue moving forward. If your token passes all three coins without landing on one, you are executed. On which three spaces should you place the coins to maximize your chances of survival?

Extra credit: Suppose there’s an additional rule that you cannot place the coins on adjacent spaces. What is the ideal placement now? What about the worst squares — where should you place your coins if you’re making a play for martyrdom?

Here is my solution:
[Show Solution]

Random walk with endpoints

The Riddler post for today is about a bar game where you flip a coin and move forward or backward depending on the result. Here is the problem:

Consider a hot new bar game. It’s played with a coin, between you and a friend, on a number line stretching from negative infinity to positive infinity. (It’s a very, very long bar.) You are assigned a winning number, the negative integer -X, and your friend is assigned his own winning number, a positive integer, +Y. A marker is placed at zero on the number line. Then the coin is repeatedly flipped. Every time the coin lands heads, the marker is moved one integer in a positive direction. Every time the coin lands tails, the marker moves one integer in a negative direction. You win if the coin reaches -X first, while your friend wins if the coin reaches +Y first. (Winner keeps the coin.)

How long can you expect to sit, flipping a coin, at the bar? Put another way, what is the expected number of coin flips in a complete game?

Here is my solution:
[Show Solution]

and here is a much slicker solution, courtesy of Daniel Ross:
[Show Solution]