Cutting a ruler into pieces

This week’s Riddler Classic is a paradoxical question about cutting a ruler into smaller pieces.

Recently, there was an issue with the production of foot-long rulers. It seems that each ruler was accidentally sliced at three random points along the ruler, resulting in four pieces. Looking on the bright side, that means there are now four times as many rulers — they just happen to have different lengths. On average, how long are the pieces that contain the 6-inch mark?

With four cuts, each piece will be on average 3 inches long, but that can’t be the answer, can it?

Here is my solution:
[Show Solution]

Circular conundrum

This week’s Riddler problem is short and sweet:

If N points are generated at random places on the perimeter of a circle, what is the probability that you can pick a diameter such that all of those points are on only one side of the newly halved circle?

Here is my solution:
[Show Solution]

Beer pong

This interesting twist on the game of Beer Pong appeared on the Riddler blog. Here it goes:

The balls are numbered 1 through N. There is also a group of N cups, labeled 1 through N, each of which can hold an unlimited number of ping-pong balls. The game is played in rounds. A round is composed of two phases: throwing and pruning.

During the throwing phase, the player takes balls randomly, one at a time, from the infinite supply and tosses them at the cups. The throwing phase is over when every cup contains at least one ping-pong ball. Next comes the pruning phase. During this phase the player goes through all the balls in each cup and removes any ball whose number does not match the containing cup. Every ball drawn has a uniformly random number, every ball lands in a uniformly random cup, and every throw lands in some cup. The game is over when, after a round is completed, there are no empty cups.

How many rounds would you expect to need to play to finish this game? How many balls would you expect to need to draw and throw to finish this game?

Here is my solution:
[Show Solution]

Archipelago

A graph theory problem from the Riddler blog. Here it goes:

You live on the volcanic archipelago of Riddleria. Your archipelago is connected via a network of bridges, forming one unified community. In an effort to conserve resources, the ancient Riddlerians who built this network opted not to build bridges between any two islands that were already connected to the community otherwise. Hence, there is exactly one path from any one island to any other island.

Each island contains exactly one volcano. You know that if a volcano erupts, the subterranean pressure change will be so great that the volcano will collapse in on itself, causing its island — and any connected bridges — to crumble into the ocean. Remarkably, other islands will be spared unless their own volcanoes erupt. But if enough bridges go down, your once-unified archipelagic community could split into several smaller, disjointed communities.

If there were N islands in the archipelago originally and each volcano erupts independently with probability p, how many disjointed communities can you expect to find when you return? What value of p maximizes this number?

Here is my solution:
[Show Solution]

Card collection completion

This Riddler puzzle is a classic probability problem: how long can one expect to wait until the entire set of cards is collected?

My son recently started collecting Riddler League football cards and informed me that he planned on acquiring every card in the set. It made me wonder, naturally, how much of his allowance he would have to spend in order to achieve his goal. His favorite set of cards is Riddler Silver; a set consisting of 100 cards, numbered 1 to 100. The cards are only sold in packs containing 10 random cards, without duplicates, with every card number having an equal chance of being in a pack.

Each pack can be purchased for \$1. If his allowance is \$10 a week, how long would we expect it to take before he has the entire set?

What if he decides to collect the more expansive Riddler Gold set, which has 300 different cards?

Here is my solution:
[Show Solution]

Hoop hop showdown

This Riddler puzzle is a shout-out to this YouTube video of a game called “Hoop hop showdown”.

Here is an idealized list of its rules:

  • Kids stand at either end of N hoops.
  • At the start of the game, one kid from each end starts hopping at a speed of one hoop per second until they run into each other, either in adjacent hoops or in the same hoop.
  • At that point, they play rock-paper-scissors at a rate of one game per second until one of the kids wins.
  • The loser goes back to their end of the hoops, a new kid immediately steps up at that end, and the winner and the new player hop until they run into each other.
  • This process continues until someone reaches the opposing end. That player’s team wins!

You’ve just been hired as the gym teacher at Riddler Elementary. You’re having a bad day, and you want to make sure the kids stay occupied for the entire class. If you put down eight hoops, how long on average will the game last? How many hoops should you put down if you want the game to last for the entire 30-minute period, on average?

Here is a derivation of how I solved the problem:
[Show Solution]

And if you just want to see the solutions:
[Show Solution]

Rug quality control

This Riddler puzzle is about rug manufacturing. How likely are we to avoid defects if manufacture the rugs randomly?

A manufacturer, Riddler Rugs™, produces a random-pattern rug by sewing 1-inch-square pieces of fabric together. The final rugs are 100 inches by 100 inches, and the 1-inch pieces come in three colors: midnight green, silver, and white. The machine randomly picks a 1-inch fabric color for each piece of a rug. Because the manufacturer wants the rugs to look random, it rejects any rug that has a 4-by-4 block of squares that are all the same color. (Its customers don’t have a great sense of the law of large numbers, or of large rugs, for that matter.)

What percentage of rugs would we expect Riddler Rugs™ to reject? How many colors should it use in the rug if it wants to manufacture a million rugs without rejecting any of them?

Here is my solution:
[Show Solution]

Colorful balls puzzle

This Riddler puzzle about an interesting game involving picking colored balls out of a box. How long will the game last?

You play a game with four balls: One ball is red, one is blue, one is green and one is yellow. They are placed in a box. You draw a ball out of the box at random and note its color. Without replacing the first ball, you draw a second ball and then paint it to match the color of the first. Replace both balls, and repeat the process. The game ends when all four balls have become the same color. What is the expected number of turns to finish the game?

Extra credit: What if there are more balls and more colors?

Here is my solution to the first part (four balls):
[Show Solution]

Here is my solution to the general case with $N$ balls:
[Show Solution]

A supreme court puzzle

This timely Riddler puzzle is about filling supreme court vacancies…

Imagine that U.S. Supreme Court nominees are only confirmed if the same party holds the presidency and the Senate. What is the expected number of vacancies on the bench in the long run?

You can assume the following:

  • You start with an empty, nine-person bench.
  • There are two parties, and each has a 50 percent chance of winning the presidency and a 50 percent chance of winning the Senate in each election.
  • The outcomes of Senate elections and presidential elections are independent.
  • The length of time for which a justice serves is uniformly distributed between zero and 40 years.

Here is my solution:
[Show Solution]

The lonesome king

This Riddler puzzle is about a random elimination game. Will someone remain at the end, or will everyone be eliminated?

In the first round, every subject simultaneously chooses a random other subject on the green. (It’s possible, of course, that some subjects will be chosen by more than one other subject.) Everybody chosen is eliminated. In each successive round, the subjects who are still in contention simultaneously choose a random remaining subject, and again everybody chosen is eliminated. If there is eventually exactly one subject remaining at the end of a round, he or she wins and heads straight to the castle for fêting. However, it’s also possible that everybody could be eliminated in the last round, in which case nobody wins and the king remains alone. If the kingdom has a population of 56,000 (not including the king), is it more likely that a prince or princess will be crowned or that nobody will win? How does the answer change for a kingdom of arbitrary size?

Here is my solution:
[Show Solution]