Randomly cutting a sandwich

This week’s Riddler Classic is geometry puzzle about randomly slicing a square sandwich.

I have made a square sandwich, and now it’s time to slice it. But rather than making a standard horizontal or diagonal cut, I instead pick two random points along the perimeter of the sandwich and make a straight cut from one point to the other. (These points can be on the same side.)

What is the probability that the smaller resulting piece has an area that is at least one-quarter of the whole area?

My solution:
[Show Solution]

Fall color peak

This week’s Riddler Classic is a seasonal puzzle about leaves changing color.

The trees change color in a rather particular way. Each tree independently begins changing color at a random time between the autumnal equinox and the winter solstice. Then, at a random later time for each tree — between when that tree’s leaves began changing color and the winter solstice — the leaves of that tree will all fall off at once. At a certain time of year, the fraction of trees with changing leaves will peak. What is this maximal fraction?

My solution:
[Show Solution]

Another way to solve the problem, courtesy of Matthew Wallace:
[Show Solution]

Loteria

This week’s Riddler Classic is about Lotería, also known as Mexican bingo!

A thousand people are playing Lotería, also known as Mexican bingo. The game consists of a deck of 54 cards, each with a unique picture. Each player has a board with 16 of the 54 pictures, arranged in a 4-by-4 grid. The boards are randomly generated, such that each board has 16 distinct pictures that are equally likely to be any of the 54.

During the game, one card from the deck is drawn at a time, and anyone whose board includes that card’s picture marks it on their board. A player wins by marking four pictures that form one of four patterns, as exemplified below: any entire row, any entire column, the four corners of the grid and any 2-by-2 square.

Four four-by-four grids are shown. In the first grid, the third row has four blue markers. In the second grid, the second column has four blue markers. In the third grid, the four corner squares are marked. And in the fourth grid, the two middle squares in the third and fourth columns are marked, forming a smaller two-by-two square.

After the fourth card has been drawn, there are no winners. What is the probability that there will be exactly one winner when the fifth card is drawn?

My solution:
[Show Solution]

Shared birthdays

This week’s Riddler Classic is a challenging counting problem about shared birthdays.

Suppose people walk into a room, one at a time. Their birthdays happen to be randomly distributed throughout the 365 days of the year (and no one was born on a leap day). The moment two people in the room have the same birthday, no more people enter the room and everyone inside celebrates by eating cake, regardless of whether that common birthday happens to be today.

On average, what is the expected number of people in the room when they eat cake?

Extra credit: Suppose everyone eats cake the moment three people in the room have the same birthday. On average, what is this expected number of people?

My solution:
[Show Solution]

Spotting a rare creature

This week’s Riddler Classic is a question about large numbers of attempts at a very unlikely thing.

Graydon is about to depart on a boating expedition that seeks to catch footage of the rare aquatic creature, F. Riddlerius. Every day he is away, he will send a hand-written letter to his new best friend, David Hacker. But if Graydon still has not spotted the creature after $n$ days (where $n$ is some very, very large number), he will return home.

Knowing the value of $n$, Graydon confides to David there is only a 50 percent chance of the expedition ending in success before the $n$ days have passed. But as soon as any footage is collected, he will immediately return home (after sending a letter that day, of course).

On average, for what fraction of the $n$ days should David expect to receive a letter?

My solution:
[Show Solution]

Pill splitting

his week’s Riddler classic is about splitting pills to get the right dose.

I’ve been prescribed to take 1.5 pills of a certain medication every day for 10 days, so I have a bottle with 15 pills. Each morning, I take two pills out of the bottle at random.

On the first morning, these are guaranteed to be two full pills. I consume one of them, split the other in half using a precision blade, consume half of that second pill, and place the remaining half back into the bottle.

On subsequent mornings when I take out two pills, there are three possibilities:

  • I get two full pills. As on the first morning, I split one and place the unused half back into the bottle.
  • I get one full pill and one half-pill, both of which I consume.
  • I get two half-pills. In this case, I take out another pill at random. If it’s a half-pill, then I consume all three halves. But if it’s a full pill, I split it and place the unused half back in the bottle.

Assume that each pill — whether it is a full pill or a half-pill — is equally likely to be taken out of the bottle.

On the 10th day, I again take out two pills and consume them. In a rush, I immediately throw the bottle in the trash before bothering to check whether I had just consumed full pills or half-pills. What’s the probability that I took the full dosage, meaning I don’t have to dig through the trash for a remaining half-pill?

My solution:
[Show Solution]

Knocking down the last bowling pin

This week’s Riddler classic is a tough one! Here is a paraphrased version of the problem.

Imagine $n^2$ bowling pins arranged in a rhombus. The image to the right illustrates the case $n=3$. We knock down the topmost pin. When any pin gets knocked down, each of the (up to two) pins directly behind it has a probability $p$ of being knocked over (independently of each other). We are interested in the probability that the bottommost pin gets knocked down in the limit of large $n$.

The original problem specifically asked about $p=0.5$ and $p=0.7$.

My solution:
[Show Solution]

Tower of goats

This week’s Riddler classic is a counting problem. Can the goats fit in the tower?

A tower has 10 floors, each of which can accommodate a single goat. Ten goats approach the tower, and each goat has its own (random) preference of floor. Multiple goats can prefer the same floor. One by one, each goat walks up the tower to its preferred room. If the floor is empty, the goat will make itself at home. But if the floor is already occupied by another goat, then it will keep going up until it finds the next empty floor, which it will occupy. But if it does not find any empty floors, the goat will be stuck on the roof of the tower. What is the probability that all 10 goats will have their own floor, meaning no goat is left stranded on the roof of the tower?

My solution:
[Show Solution]

Catch the grasshopper

This week’s Riddler classic is a probability problem about a grasshopper!

You are trying to catch a grasshopper on a balance beam that is 1 meter long. Every time you try to catch it, it jumps to a random point along the interval between 20 centimeters left of its current position and 20 centimeters right of its current position. If the grasshopper is within 20 centimeters of one of the edges, it will not jump off the edge. For example, if it is 10 centimeters from the left edge of the beam, then it will randomly jump to anywhere within 30 centimeters of that edge with equal probability (meaning it will be twice as likely to jump right as it is to jump left). After many, many failed attempts to catch the grasshopper, where is it most likely to be on the beam? Where is it least likely? And what is the ratio between these respective probabilities?

My solution:
[Show Solution]

Desert escape

This week’s Riddler classic is about geometry and probability, and desert escape! Here is the (paraphrased) problem:

There are $n$ travelers who are trapped on a thin and narrow oasis. They each independently pick a random location in the oasis from which to start and a random direction in which to travel. What is the probability that none of their paths will intersect, in terms of $n$?

My solution:
[Show Solution]