The luckiest coin

This week’s Riddler Classic is about finding the “luckiest” coin!

I have in my possession 1 million fair coins. I first flip all 1 million coins simultaneously, discarding any coins that come up tails. I flip all the coins that come up heads a second time, and I again discard any of these coins that come up tails. I repeat this process, over and over again. If at any point I am left with one coin, I declare that to be the “luckiest” coin.

But getting to one coin is no sure thing. For example, I might find myself with two coins, flip both of them and have both come up tails. Then I would have zero coins, never having had exactly one coin.

What is the probability that I will at some point have exactly one “luckiest” coin?

Here is my solution:
[Show Solution]

Infinite cake

This week’s Riddler Express is a short problem about infinite series. Let’s dig in! (I paraphrased the question)

You and your infinitely many friends are sharing a cake, and you come up with several different methods of splitting it.

  1. Friend 1 takes half of the cake, Friend 2 takes a third of what remains, Friend 3 takes a quarter of what remains after Friend 2, Friend 4 takes a fifth of what remains after Friend 3, and so on.
  2. Friend 1 takes $1/2^2$ (or one-quarter) of the cake, Friend 2 takes $1/3^2$ (or one-ninth) of what remains, Friend 3 takes $1/4^2$ of what remains after Friend 3, and so on.
  3. Same as previous, with even denominators only: Friend 1 takes $1/2^2$ of the cake, Friend 2 takes $1/4^2$ of what remains, Friend 3 takes $1/6^2$ of what remains after Friend 2, and so on.

For each of these methods, after your infinitely many friends take their respective pieces, how much cake is left?

Here is my solution
[Show Solution]