The honest prince

This Riddler puzzle is about randomly generating convex quadrilaterals.

You’re the most eligible bachelorette in the kingdom, and you’ve decided to marry a prince. The king has invited you to his castle so that you may choose from among his three sons. The eldest prince is honest and always tells the truth. The youngest prince is dishonest and always lies. The middle prince is mischievous and tells the truth sometimes and lies the rest of the time. Because you will be forever married to one of the princes, you want to marry the eldest (truth-teller) or the youngest (liar) because at least you know where you stand with each. But there’s a problem: You can’t tell the princes apart just by looking, and the king will grant you only one yes-or-no question that you may address to only one of the brothers.

What yes-or-no question can you ask that will ensure that you do not marry the middle prince?

Here is my solution:
[Show Solution]

Convex ranches

This Riddler puzzle is about randomly generating convex quadrilaterals.

Consider four square-shaped ranches, arranged in a two-by-two pattern, as if part of a larger checkerboard. One family lives on each ranch, and each family builds a small house independently at a random place within the property. Later, as the families in adjacent quadrants become acquainted, they construct straight-line paths between the houses that go across the boundaries between the ranches, four in total. These paths form a quadrilateral circuit path connecting all four houses. This circuit path is also the boundary of the area where the families’ children are allowed to roam.

What is the probability that the children are able to travel in a straight line from any allowed place to any other allowed place without leaving the boundaries? (In other words, what is the probability that the quadrilateral is convex?)

Here is my solution:
[Show Solution]

Space race

This Riddler puzzle is about a game involving filling up the space on a square table using coins.

Two players are seated at a square table. The first player places a coin on the table, the second places a coin on the table, and they carry on placing coins one after another, with the only condition being that the coins are not allowed to touch. The winner is the person who places the final coin on the table, meaning that he or she fills the last remaining space between the other coins.

The table has to be larger than a single coin, and all the coins placed must be identically sized. If the players play optimally, is one of the two players guaranteed to win? If so, what is the winning strategy?

Need a hint?
[Show Solution]

Here is my solution:
[Show Solution]

Rope timing

This Riddler problem is all about timing:

Suppose you have four ropes and a lighter. Each rope burns at a nonconstant rate but takes exactly one hour to burn completely from one end to the other. You can only light the ropes at either of their ends but can decide when to light each end as you see fit. If you’re strategic in how you burn the ropes, how many specific lengths of time can you measure? (For example, if you had one rope, you could measure two lengths of time: one hour, by simply burning the entire rope from one end, and half an hour, by burning the rope from both ends and marking when the flames meet.)

Extra credit: What if you had N ropes?

Here is my solution:
[Show Solution]

Note: my solution is incomplete (see comments below!)

Toddler poker

In a previous post, I took a look at “baby poker”, a game involving two players rolling a six-sided die. The higher number wins, but players may elect to raise, call, or fold depending on their number (which only they can see). In this post, I’ll take a look at the continuous version of the problem (also appeared in a recent Riddler post!) Here is the full text of the problem:

Toddler poker is played by two players. Each is dealt a “card,” which is actually a number randomly chosen uniformly from the interval [0,1]. (It could be 0.1, or 0.9234781, or 1/π, and so on.) The game starts with each player anteing \$1. Player A can then either “call,” in which case both numbers are shown and the player with the higher number wins the \$2 on the table, or “raise,” betting one more dollar. If A raises, B then has the option to either “call” by matching A’s second dollar, after which the higher number wins the \$4 on the table, or “fold,” in which case A wins but B is out only his original \$1. No other plays are made.

What is the optimal strategy for each player? Under those strategies, how much is a game of toddler poker worth to Player A?

Extra credit: What if the value of the raise is \$k — i.e., players stand to profit \$k instead of \$2 after the raise?

Here is my derivation:
[Show Solution]

If you’d like the tl;dr instead:
[Show Solution]

Microorganism multiplication

This Riddler is about microorganisms multiplying. Will they thrive or will the species go extinct?

At the beginning of time, there is a single microorganism. Each day, every member of this species either splits into two copies of itself or dies. If the probability of multiplication is p, what are the chances that this species goes extinct?

Here is my solution:
[Show Solution]

Here is a more technical (and more correct!) solution adapted from a comment by Bojan.
[Show Solution]

Timing a stoplight just right

This Riddler is about how to perfectly time a stoplight, something we’ve all had to deal with!

You are driving your car on a perfectly flat, straight road. You are the only one on the road and you can see anything ahead of you perfectly. At time t=0, you are at Point A, cruising along at a speed of 100 kilometers per hour, which is the speed limit for the whole road. You want to reach Point C, exactly 4 kilometers ahead, in the shortest time possible. But, at Point B, 2 kilometers ahead of you, there is a traffic light.

At time t=0, the light is green, but you don’t know how long it has been green. You do know that at the beginning of each second, there is a 1 percent chance that the light will turn yellow. Once it turns yellow, it remains yellow for 5 seconds and then turns red for 20 seconds. Your car can accelerate or decelerate at a maximum rate of 2 meters per second-squared. You must always drive at or below the speed limit. You can pass through the intersection when the traffic light is yellow, but not when it is red.

What is the best strategy to reach your destination as soon as possible?

Here is my solution:
[Show Solution]

Lucky spins in roulette

Roulette is a game where the dealer spins a numbered wheel containing a marble. Once the wheel settles, the marble lands on exactly one (winning) number. A standard American roulette wheel has 38 numbers on it. Players may place bets on a particular number, a color (red or black), or a particular quadrant of the wheel.

I was recently in Las Vegas for a conference, and I noticed that the roulette tables in the conference hotel were equipped with screens that display real-time statistics! A computer keeps track of the winning numbers for the past 300 spins and shows how frequently each number was a winner (see photo on the right). The two “elite numbers” were 12 and 27 (each occurred 13 times in the past 300 games) and the “poor performer” was 0, which only occurred 2 times.

Even if the roulette wheel is equally likely to land on each number, there will be natural fluctuations. Some numbers will obviously win more frequently than others in any finite number of spins. But what sorts of deviations can we expect? In the picture above, the spread between most frequent winner and least frequent winner was 13 to 2 over the course of 300 games. Is this normal? In other words, how big would the spread have to be before you suspected that the roulette wheel was rigged and was favoring some numbers over others? Let’s find out!

Results via simulation

Let’s suppose the wheel has $n$ different numbers on it, which we label $\{1,2,\dots,n\}$, and we spin it $m$ times when we aggregate our statistics. Note that in the actual roulette game, $n=38$ and $m=300$. If the game is fair, then each number is equally likely to occur and the spins are mutually independent. In other words, rolling a 4 on your first spin doesn’t make you more or less likely to roll a 4 or any other number on subsequent spins.

This sort of game is straightforward to simulate in Matlab. I wrote code that plays 300 games, counts how many times the most and least frequent numbers occur, and then repeats the entire process a large number of times. Then, I plotted a histogram showing what proportion of the time the most frequent number occurred 10 times, 11 times, etc. This is known as the empirical distribution. Here are the results of the simulation (aggregated over 100 million trials).

As we can see, a spread from 2 to 13 is right around what we expect! Of course, outliers are still possible. For example, it’s possible for the luckiest number to win 30 times out of 300 spins, but this only happened twice out of 100,000,000 simulated runs.

Analytical results

The roulette wheel lands on one of the $n$ numbers with equal probability. We then perform $m$ spins and count how many times each number occurs. If we place the counts in the vector $(x_1,\dots,x_n)$, where $x_1+\dots+x_n=m$, then this vector follows a multinomial distribution. The probability mass function is therefore:
\[
p(x_1,\dots,x_n) = {m \choose {x_1,\dots,x_m}} \frac{1}{n^m}
\]The bracketed term is called a multinomial coefficient and it counts the number of ways we can spin a “$1$” $x_1$ times, a “$2$” $x_2$ times, and so on. This also corresponds to the number of ways of depositing $m$ distinct objects into $n$ distinct bins, with $x_1$ objects in the first bin, $x_2$ objects in the second bin, and so on. It’s also equal to $\frac{m!}{x_1! \cdot x_2!\cdots x_n!}$. Meanwhile, $n^m$ is the number of different ways we can spin the roulette wheel $m$ times.

The probability that the most frequent spin occurs at most $k$ times is:
\[
F_\text{max}(k) = \sum_{\substack{ x_1+\dots+x_n=m\\x_i\,\le\,k}} p(x_1,\dots,x_n)
\]In other words, we must sum over all tuples $(x_1,\dots,x_n)$ of nonnegative integers that sum to $m$, that are each no greater than $k$. This is the cumulative distribution function, and in order to obtain the probability that the most frequent spin occurs exactly $k$ times (the probability mass function), we compute the difference:
\[
q_\text{max}(k) = F_\text{max}(k)-F_\text{max}(k-1)
\]A similar expression can be obtained for the probability that the least frequent spin occurs exactly $k$ times. These sums are impractical to compute because they have an astronomical number of terms. We must resort to approximation!

In our multinomial distribution, each $x_i$ has mean $\frac{m}{n}$ and variance $\frac{m}{n}\left(1-\frac{1}{n}\right)$. We will make the approximation that the $x_i$ are independent binomial random variables. Of course the $x_i$ are not truly independent since they must sum to $m$, but $n$ is large enough that this is a good approximation. We can therefore compute the distribution of the maximum by using the cumulative distribution:
\begin{align}
F_\text{max}(k) &= \mathbb{P}(x_1\le k,\dots,x_n\le k) \\
&\approx \prod_{i=1}^n \mathbb{P}(x_i \le k) \\
&= \left( \sum_{j=0}^k { m \choose j } \left( \frac{1}{n} \right)^j \left( 1-\frac{1}{n}\right)^{m-j} \right)^n
\end{align}This sum is far more manageable and we can compute it exactly without any difficulty. Once we have this cumulative distribution, we compute our approximation to $q_\text{max}(k)$ as before, by taking the difference of successive cumulative sums. The result is shown in the plot below.

As we can see, this plot is very close to the one we obtained via simulation. So the binomial approximation is quite good! It’s tempting to approximate the binomial distribution even further as a normal distribution, but it turns out this approximation isn’t very good. A rule of thumb to see whether we should use a normal distribution is to check whether 3 standard deviations of the mean keeps us within the range of admissible values, i.e. $\{0,1,\dots,m\}$. This amounts to checking, in our case, that $m > 9(n-1)$. Since $n=38$ and $m=300$, the inequality doesn’t hold because the right-hand side equals $333$.

Conclusion

Seeing one number occur 13 times while another only occurs 2 times in the past 300 spins isn’t abnormal at all. In fact, it’s very much what you should expect! So don’t think of the real-time statistics as a means to help you predict “lucky” or “unlucky” numbers… think of it as a way to double-check that the roulette wheel is unbiased!

Impromptu gambling with dice

This Riddler puzzle is an impromptu gambling game about rolling dice.

You and I stumble across a 100-sided die in our local game shop. We know we need to have this die — there is no question about it — but we’re not quite sure what to do with it. So we devise a simple game: We keep rolling our new purchase until one roll shows a number smaller than the one before. Suppose I give you a dollar every time you roll. How much money do you expect to win?

Extra credit: What happens to the amount of money as the number of sides increases?

Here is my solution:
[Show Solution]

For a more in-depth analysis of the distribution, read on:
[Show Solution]

Baby poker

Another game theory problem from the Riddler. This game is a simplified version of poker, but captures some interesting behaviors!

Baby poker is played by two players, each holding a single die in a cup. The game starts with each player anteing \$1. Then both shake their die, roll it, and look at their own die only. Player A can then either “call,” in which case both dice are shown and the player with the higher number wins the \$2 on the table, or Player A can “raise,” betting one more dollar. If A raises, then B has the option to either “call” by matching A’s second dollar, after which the higher number wins the \$4 on the table, or B can “fold,” in which case A wins but B is out only his original \$1. No other plays are made, and if the dice match, a called pot is split equally.

What is the optimal strategy for each player? Under those strategies, how much is a game of baby poker worth to Player A? In other words, how much should A pay B beforehand to make it a fair game?

If you’re interested in the derivation (and maybe learning about some game theory along the way), you can read my full solution here:
[Show Solution]

This alternate solution was proposed by a commenter named Chris. Same answer, but a simpler argument!
[Show Solution]

If you’d just like to know the answer along with a brief explanation, here is the tl;dr version:
[Show Solution]