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1 The lossless S-lemma

The lossless S-lemma (or S-procedure) is a statement about one quadratic inequality implying
another. It has applications in robust control and constrained optimization.

Where does the name S-lemma come from? The following explanation is an excerpt from a survey
on the S-Lemma by Polik and Terlaky!

The term S-method was coined by Aizerman and Gantmacher in their book?, but later
it changed to S-procedure. The S-method tries to decide the stability of a system of
linear differential equations by constructing a Lyapunov matrix. During the process an
auxiliary matrix S (for stability) is introduced. This construction leads to a system of
quadratic equations (the Lur’e resolving equations, 1944). If that quadratic system can
be solved, then a suitable Lyapunov function can be constructed. The term S-lemma
refers to results stating that such a system can be solved under certain conditions; the
first such result is due to Yakubovich (1971).

Here is the result.

Theorem 1.1 (Lossless S-lemma). Suppose Py and Py are symmetric matrices of the same size.
The following statements are equivalent.

(i) If x satisfies x7 Pixz < 0, then we have x7 Pyx < 0.

(i) There exists A > 0 such that Py < \Pj.

Proof. Suppose that (ii) holds. Then there exists A > 0 such that Py < AP;. Therefore,
2T Pyx < A" Pz for all x. (1)
If 2T Pyz < 0, then from Eq. (1), we have 27 Py < 0, and therefore (i) holds. This proves (i) = (i).

Now we prove the difficult direction. Define the sets
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Both S and T are subsets of R%. Now suppose that (i) holds. We prove two important properties:

uSOandv>0}.

S and T are disjoint. To see why, suppose [%] € S. Then, we have v = z" Pjz and v = 2 Py
for some z € R". We know from (i) that if v < 0, then we must have v < 0. This means that
[¥] ¢ T, and therefore S and T are disjoint.
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S is a cone. In other words, if z € S, then az € S for all @« > 0. To see why, suppose [¥] € S.
Then, we have u = 2" Piz and v = 2" Pyx for some x € R”. Therefore:

o[o] e ] = [

S is convex. To see why, suppose z; € S and z3 =€ S. We would like to show that az1+(1—a)zy €
S for all a € [0, 1]. Since S is a cone, this is equivalent to proving that azq + [z € S for all o, 5 > 0.
We consider two cases.

If 21 and 2o are linearly dependent, then zo = cz; for some ¢ # 0. But since S is a cone, we have
azy + Bze = (a+cf)z = %(oz +cf)z2

If ¢ > 0, then we have (a4 ¢f)z1 € S because of the cone property. If ¢ < 0, then either (a+ ¢f) or
%(a + ¢f) will be positive, so we can use the cone property again to show that either (v +c¢fB)z; € S
or %(a +¢f)z2 € S. In conclusion, we have azy + Sz9 € S.

Suppose instead that z; and zo are linearly independent. Since z1,2z2 € S, we can let x and y be
defined such that . -
_ |z Pz _ |y Py
21 = |::L‘TP01L‘:| , and 29 = [yTPOy .

Since z; and zy are linearly independent, then every vector in R? can be expressed as a linear
combination of z; and z5. In particular, there must exist a,b € R such that

|:.I‘TP1y

a:Tng} =az + bz

In order to show that az; + Bz9 € S, we must show that there exists some w € R™ such that

w' Py w]

az) + Bz = [wTPow

We will look for w of the form w = px + qy. This leads to:

(pz + qy)" Po(pz + qy)

_ [p%TPlx +2pgaT Py + q2yTP1y}
p?x " Pox + 2pqx" Poy + ¢*y" Poy

= p*z1 + 2pq(az + bz2) + ¢*22

= (p? + 2pqa)z, + (¢ + 2pgb) 2.

azy + Bz = [(px +qy)" Pi(pz + qy)]

In other words:
o= p2 +2pga and (= q2 + 2pgb. (2)

Remember: «, 3, a,b are fixed, and we are tasked with showing that we can always find a real pair
(p, q) that satisfies the above two equations. Let’s write ¢ = mp and eliminate ¢g. This leads to:

a=p*(1+2am) and S =p*(m?+ 2bm).

Eliminating p, we obtain
a(m? + 2bm) = B(1 + 2am)



The solutions are given by

(2aB — 2ba) £ /(248 — 2ba))? + 43

m = o (3)

Since a > 0 and B > 0, these solutions are real. One of them solutions is positive and the other is
negative. Pick the one for which am > 0. Then we can solve for p and ¢ and obtain
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It is straightforward to check that these choices together with (3) satisfy (2).

Putting everything together. We have established that S is a convex cone, and disjoint from
T. Here is a diagram of what S and T might look like.

v

We now make use of the fact that disjoint convex sets can always be separated. In other words, we
can find a hyperplane such that each set is on a different side of the hyperplane. Specifically, we
can find a A > 0 such that S lies below while T lies above, as shown in the figure above. The reason
for A being nonnegative is so that the line does not intersect 7' (note that the lower boundary of T
is not included in 7). Now S lies below, which means that: for all [}] € S, we have v < Au. From
the definition of S, this is the same as saying that for all =, we have 2" Pyz < Az"Piz. In other
words, we have Py < APy, as required. Therefore (i) = (ii) and the proof is complete. [ |



2 The lossy S-lemma

When we have multiple quadratic constraints, only the easy direction holds.

Theorem 2.1 (Lossy S-lemma). Suppose Py,..., P, are symmetric matrices of the same size.
Consider the following statements.

(i) If x satisfies x" Pz <0 fork=1,...,m, then x' Pyx < 0.
(ii) There exist M1, ..., A\ > 0 such that Py <> 7" A Py.

Then we have (ii) = (i).

The proof is the same as in Theorem 1.1. The reason the same approach cannot be used to prove
the converse here is that the set

S = {(xTPox, .., &' Ppx) € R ’ x € Rm}

is only guaranteed to be convex when m = 1.
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