The S-lemma

Date: Wednesday December 1, 2021

1 The lossless S-lemma

The lossless S-lemma (or S-procedure) is a statement about one quadratic inequality implying another. It has applications in robust control and constrained optimization.

Where does the name S-lemma come from? The following explanation is an excerpt from a survey on the S-Lemma by Pólik and Terlaky ${ }^{1}$

The term S-method was coined by Aizerman and Gantmacher in their book ${ }^{2}$, but later it changed to S-procedure. The S-method tries to decide the stability of a system of linear differential equations by constructing a Lyapunov matrix. During the process an auxiliary matrix S (for stability) is introduced. This construction leads to a system of quadratic equations (the Lur'e resolving equations, 1944). If that quadratic system can be solved, then a suitable Lyapunov function can be constructed. The term S-lemma refers to results stating that such a system can be solved under certain conditions; the first such result is due to Yakubovich (1971).

Here is the result.
Theorem 1.1 (Lossless S-lemma). Suppose P_{0} and P_{1} are symmetric matrices of the same size. The following statements are equivalent.
(i) If x satisfies $x^{\top} P_{1} x \leq 0$, then we have $x^{\top} P_{0} x \leq 0$.
(ii) There exists $\lambda \geq 0$ such that $P_{0} \preceq \lambda P_{1}$.

Proof. Suppose that (ii) holds. Then there exists $\lambda \geq 0$ such that $P_{0} \preceq \lambda P_{1}$. Therefore,

$$
\begin{equation*}
x^{\top} P_{0} x \leq \lambda x^{\top} P_{1} x \quad \text { for all } x . \tag{1}
\end{equation*}
$$

If $x^{\boldsymbol{\top}} P_{1} x \leq 0$, then from Eq. (1), we have $x^{\boldsymbol{\top}} P_{0} \leq 0$, and therefore (i) holds. This proves (ii) \Longrightarrow (i).
Now we prove the difficult direction. Define the sets

$$
S:=\left\{\left.\left[\begin{array}{l}
x^{\boldsymbol{\top}} P_{1} x \\
x^{\top} P_{0} x
\end{array}\right] \right\rvert\, x \in \mathbb{R}^{n}\right\}, \quad T:=\left\{\left.\left[\begin{array}{l}
u \\
v
\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, u \leq 0 \text { and } v>0\right\} .
$$

Both S and T are subsets of \mathbb{R}^{2}. Now suppose that (i) holds. We prove two important properties:
S and T are disjoint. To see why, suppose $\left[\begin{array}{c}u \\ v\end{array}\right] \in S$. Then, we have $u=x^{\top} P_{1} x$ and $v=x^{\boldsymbol{\top}} P_{0} x$ for some $x \in \mathbb{R}^{n}$. We know from (i) that if $u \leq 0$, then we must have $v \leq 0$. This means that $\left[\begin{array}{l}u \\ v\end{array}\right] \notin T$, and therefore S and T are disjoint.

[^0]S is a cone. In other words, if $z \in S$, then $\alpha z \in S$ for all $\alpha \geq 0$. To see why, suppose $\left[\begin{array}{l}u \\ v\end{array}\right] \in S$. Then, we have $u=x^{\top} P_{1} x$ and $v=x^{\top} P_{0} x$ for some $x \in \mathbb{R}^{n}$. Therefore:

$$
\alpha\left[\begin{array}{l}
u \\
v
\end{array}\right]=\alpha\left[\begin{array}{l}
x^{\top} P_{1} x \\
x^{\top} P_{0} x
\end{array}\right]=\left[\begin{array}{l}
(\sqrt{\alpha} x)^{\top} P_{1}(\sqrt{\alpha} x) \\
(\sqrt{\alpha} x)^{\top} P_{0}(\sqrt{\alpha} x)
\end{array}\right] \in S
$$

S is convex. To see why, suppose $z_{1} \in S$ and $z_{2}=\in S$. We would like to show that $\alpha z_{1}+(1-\alpha) z_{2} \in$ S for all $\alpha \in[0,1]$. Since S is a cone, this is equivalent to proving that $\alpha z_{1}+\beta z_{2} \in S$ for all $\alpha, \beta \geq 0$. We consider two cases.

If z_{1} and z_{2} are linearly dependent, then $z_{2}=c z_{1}$ for some $c \neq 0$. But since S is a cone, we have

$$
\alpha z_{1}+\beta z_{2}=(\alpha+c \beta) z_{1}=\frac{1}{c}(\alpha+c \beta) z_{2}
$$

If $c>0$, then we have $(\alpha+c \beta) z_{1} \in S$ because of the cone property. If $c<0$, then either $(\alpha+c \beta)$ or $\frac{1}{c}(\alpha+c \beta)$ will be positive, so we can use the cone property again to show that either $(\alpha+c \beta) z_{1} \in S$ or $\frac{1}{c}(\alpha+c \beta) z_{2} \in S$. In conclusion, we have $\alpha z_{1}+\beta z_{2} \in S$.

Suppose instead that z_{1} and z_{2} are linearly independent. Since $z_{1}, z_{2} \in S$, we can let x and y be defined such that

$$
z_{1}=\left[\begin{array}{l}
x^{\top} P_{1} x \\
x^{\top} P_{0} x
\end{array}\right], \quad \text { and } \quad z_{2}=\left[\begin{array}{l}
y^{\top} P_{1} y \\
y^{\top} P_{0} y
\end{array}\right] .
$$

Since z_{1} and z_{2} are linearly independent, then every vector in \mathbb{R}^{2} can be expressed as a linear combination of z_{1} and z_{2}. In particular, there must exist $a, b \in \mathbb{R}$ such that

$$
\left[\begin{array}{l}
x^{\top} P_{1} y \\
x^{\top} P_{0} y
\end{array}\right]=a z_{1}+b z_{2}
$$

In order to show that $\alpha z_{1}+\beta z_{2} \in S$, we must show that there exists some $w \in \mathbb{R}^{n}$ such that

$$
\alpha z_{1}+\beta z_{2}=\left[\begin{array}{l}
w^{\top} P_{1} w \\
w^{\top} P_{0} w
\end{array}\right]
$$

We will look for w of the form $w=p x+q y$. This leads to:

$$
\begin{aligned}
\alpha z_{1}+\beta z_{2} & =\left[\begin{array}{l}
(p x+q y)^{\top} P_{1}(p x+q y) \\
(p x+q y)^{\top} P_{0}(p x+q y)
\end{array}\right] \\
& =\left[\begin{array}{l}
p^{2} x^{\top} P_{1} x+2 p q x^{\top} P_{1} y+q^{2} y^{\top} P_{1} y \\
p^{2} x^{\top} P_{0} x+2 p q x^{\top} P_{0} y+q^{2} y^{\top} P_{0} y
\end{array}\right] \\
& =p^{2} z_{1}+2 p q\left(a z_{1}+b z_{2}\right)+q^{2} z_{2} \\
& =\left(p^{2}+2 p q a\right) z_{1}+\left(q^{2}+2 p q b\right) z_{2} .
\end{aligned}
$$

In other words:

$$
\begin{equation*}
\alpha=p^{2}+2 p q a \quad \text { and } \quad \beta=q^{2}+2 p q b . \tag{2}
\end{equation*}
$$

Remember: α, β, a, b are fixed, and we are tasked with showing that we can always find a real pair (p, q) that satisfies the above two equations. Let's write $q=m p$ and eliminate q. This leads to:

$$
\alpha=p^{2}(1+2 a m) \quad \text { and } \quad \beta=p^{2}\left(m^{2}+2 b m\right) .
$$

Eliminating p, we obtain

$$
\alpha\left(m^{2}+2 b m\right)=\beta(1+2 a m)
$$

The solutions are given by

$$
\begin{equation*}
m=\frac{(2 a \beta-2 b \alpha) \pm \sqrt{(2 a \beta-2 b \alpha)^{2}+4 \alpha \beta}}{2 \alpha} \tag{3}
\end{equation*}
$$

Since $\alpha>0$ and $\beta>0$, these solutions are real. One of them solutions is positive and the other is negative. Pick the one for which $a m \geq 0$. Then we can solve for p and q and obtain

$$
p=\frac{\sqrt{\alpha}}{\sqrt{1+2 a m}} \quad \text { and } \quad q=\frac{m \sqrt{\alpha}}{\sqrt{1+2 a m}}
$$

It is straightforward to check that these choices together with (3) satisfy (2).

Putting everything together. We have established that S is a convex cone, and disjoint from T. Here is a diagram of what S and T might look like.

We now make use of the fact that disjoint convex sets can always be separated. In other words, we can find a hyperplane such that each set is on a different side of the hyperplane. Specifically, we can find a $\lambda \geq 0$ such that S lies below while T lies above, as shown in the figure above. The reason for λ being nonnegative is so that the line does not intersect T (note that the lower boundary of T is not included in T). Now S lies below, which means that: for all $\left[\begin{array}{l}u \\ v\end{array}\right] \in S$, we have $v \leq \lambda u$. From the definition of S, this is the same as saying that for all x, we have $x^{\top} P_{0} x \leq \lambda x^{\top} P_{1} x$. In other words, we have $P_{0} \preceq \lambda P_{1}$, as required. Therefore (i) \Longrightarrow (ii) and the proof is complete.

2 The lossy S-lemma

When we have multiple quadratic constraints, only the easy direction holds.
Theorem 2.1 (Lossy S-lemma). Suppose P_{0}, \ldots, P_{m} are symmetric matrices of the same size. Consider the following statements.
(i) If x satisfies $x^{\boldsymbol{\top}} P_{k} x \leq 0$ for $k=1, \ldots, m$, then $x^{\boldsymbol{\top}} P_{0} x \leq 0$.
(ii) There exist $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ such that $P_{0} \preceq \sum_{k=1}^{m} \lambda_{k} P_{k}$.

Then we have (ii) \Longrightarrow (i).

The proof is the same as in Theorem 1.1. The reason the same approach cannot be used to prove the converse here is that the set

$$
S=\left\{\left(x^{\boldsymbol{\top}} P_{0} x, \ldots, x^{\boldsymbol{\top}} P_{m} x\right) \in \mathbb{R}^{m+1} \mid x \in \mathbb{R}^{m}\right\}
$$

is only guaranteed to be convex when $m=1$.

[^0]: ${ }^{1}$ I. Pólik and T. Terlaky, A Survey of the S-Lemma, SIAM Review, Volume 49, 2007, Pages 371-418.
 ${ }^{2}$ M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regulator Systems, Holden-Day Series in Information Systems, Holden-Day, San Francisco, 1964. Originally published as Absolutnaya Ustoichivost' Reguliruyemykh Sistem by The Academy of Sciences of the USSR, Moscow, 1963

