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1 The lossless S-lemma

The lossless S-lemma (or S-procedure) is a statement about one quadratic inequality implying
another. It has applications in robust control and constrained optimization.

Where does the name S-lemma come from? The following explanation is an excerpt from a survey
on the S-Lemma by Pólik and Terlaky1

The term S-method was coined by Aizerman and Gantmacher in their book2, but later
it changed to S-procedure. The S-method tries to decide the stability of a system of
linear differential equations by constructing a Lyapunov matrix. During the process an
auxiliary matrix S (for stability) is introduced. This construction leads to a system of
quadratic equations (the Lur’e resolving equations, 1944). If that quadratic system can
be solved, then a suitable Lyapunov function can be constructed. The term S-lemma
refers to results stating that such a system can be solved under certain conditions; the
first such result is due to Yakubovich (1971).

Here is the result.

Theorem 1.1 (Lossless S-lemma). Suppose P0 and P1 are symmetric matrices of the same size.
The following statements are equivalent.

(i) If x satisfies xTP1x ≤ 0, then we have xTP0x ≤ 0.

(ii) There exists λ ≥ 0 such that P0 � λP1.

Proof. Suppose that (ii) holds. Then there exists λ ≥ 0 such that P0 � λP1. Therefore,

xTP0x ≤ λxTP1x for all x. (1)

If xTP1x ≤ 0, then from Eq. (1), we have xTP0 ≤ 0, and therefore (i) holds. This proves (ii) =⇒ (i).

Now we prove the difficult direction. Define the sets

S :=

{[
xTP1x
xTP0x

] ∣∣∣∣ x ∈ Rn

}
, T :=

{[
u
v

]
∈ R2

∣∣∣∣ u ≤ 0 and v > 0

}
.

Both S and T are subsets of R2. Now suppose that (i) holds. We prove two important properties:

S and T are disjoint. To see why, suppose [ uv ] ∈ S. Then, we have u = xTP1x and v = xTP0x
for some x ∈ Rn. We know from (i) that if u ≤ 0, then we must have v ≤ 0. This means that
[ uv ] /∈ T , and therefore S and T are disjoint.

1I. Pólik and T. Terlaky, A Survey of the S-Lemma, SIAM Review, Volume 49, 2007, Pages 371–418.
2M. A. Aizerman and F. R. Gantmacher, Absolute Stability of Regulator Systems, Holden-Day Series in Informa-

tion Systems, Holden-Day, San Francisco, 1964. Originally published as Absolutnaya Ustoichivost’ Reguliruyemykh
Sistem by The Academy of Sciences of the USSR, Moscow, 1963
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S is a cone. In other words, if z ∈ S, then αz ∈ S for all α ≥ 0. To see why, suppose [ uv ] ∈ S.
Then, we have u = xTP1x and v = xTP0x for some x ∈ Rn. Therefore:

α

[
u
v

]
= α

[
xTP1x
xTP0x

]
=

[
(
√
αx)TP1(

√
αx)

(
√
αx)TP0(

√
αx)

]
∈ S

S is convex. To see why, suppose z1 ∈ S and z2 =∈ S. We would like to show that αz1+(1−α)z2 ∈
S for all α ∈ [0, 1]. Since S is a cone, this is equivalent to proving that αz1+βz2 ∈ S for all α, β ≥ 0.
We consider two cases.

If z1 and z2 are linearly dependent, then z2 = cz1 for some c 6= 0. But since S is a cone, we have

αz1 + βz2 = (α+ cβ)z1 =
1
c (α+ cβ)z2

If c > 0, then we have (α+ cβ)z1 ∈ S because of the cone property. If c < 0, then either (α+ cβ) or
1
c (α+ cβ) will be positive, so we can use the cone property again to show that either (α+ cβ)z1 ∈ S
or 1

c (α+ cβ)z2 ∈ S. In conclusion, we have αz1 + βz2 ∈ S.

Suppose instead that z1 and z2 are linearly independent. Since z1, z2 ∈ S, we can let x and y be
defined such that

z1 =

[
xTP1x
xTP0x

]
, and z2 =

[
yTP1y
yTP0y

]
.

Since z1 and z2 are linearly independent, then every vector in R2 can be expressed as a linear
combination of z1 and z2. In particular, there must exist a, b ∈ R such that[

xTP1y
xTP0y

]
= az1 + bz2

In order to show that αz1 + βz2 ∈ S, we must show that there exists some w ∈ Rn such that

αz1 + βz2 =

[
wTP1w
wTP0w

]
We will look for w of the form w = px+ qy. This leads to:

αz1 + βz2 =

[
(px+ qy)TP1(px+ qy)
(px+ qy)TP0(px+ qy)

]
=

[
p2xTP1x+ 2pqxTP1y + q2yTP1y
p2xTP0x+ 2pqxTP0y + q2yTP0y

]
= p2z1 + 2pq(az1 + bz2) + q2z2

= (p2 + 2pqa)z1 + (q2 + 2pqb)z2.

In other words:
α = p2 + 2pqa and β = q2 + 2pqb. (2)

Remember: α, β, a, b are fixed, and we are tasked with showing that we can always find a real pair
(p, q) that satisfies the above two equations. Let’s write q = mp and eliminate q. This leads to:

α = p2(1 + 2am) and β = p2(m2 + 2bm).

Eliminating p, we obtain
α(m2 + 2bm) = β(1 + 2am)
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The solutions are given by

m =
(2aβ − 2bα)±

√
(2aβ − 2bα)2 + 4αβ

2α
(3)

Since α > 0 and β > 0, these solutions are real. One of them solutions is positive and the other is
negative. Pick the one for which am ≥ 0. Then we can solve for p and q and obtain

p =

√
α√

1 + 2am
and q =

m
√
α√

1 + 2am

It is straightforward to check that these choices together with (3) satisfy (2).

Putting everything together. We have established that S is a convex cone, and disjoint from
T . Here is a diagram of what S and T might look like.

We now make use of the fact that disjoint convex sets can always be separated. In other words, we
can find a hyperplane such that each set is on a different side of the hyperplane. Specifically, we
can find a λ ≥ 0 such that S lies below while T lies above, as shown in the figure above. The reason
for λ being nonnegative is so that the line does not intersect T (note that the lower boundary of T
is not included in T ). Now S lies below, which means that: for all [ uv ] ∈ S, we have v ≤ λu. From
the definition of S, this is the same as saying that for all x, we have xTP0x ≤ λxTP1x. In other
words, we have P0 � λP1, as required. Therefore (i) =⇒ (ii) and the proof is complete. �
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2 The lossy S-lemma

When we have multiple quadratic constraints, only the easy direction holds.

Theorem 2.1 (Lossy S-lemma). Suppose P0, . . . , Pm are symmetric matrices of the same size.
Consider the following statements.

(i) If x satisfies xTPkx ≤ 0 for k = 1, . . . ,m, then xTP0x ≤ 0.

(ii) There exist λ1, . . . , λm ≥ 0 such that P0 �
∑m

k=1 λkPk.

Then we have (ii) =⇒ (i).

.

The proof is the same as in Theorem 1.1. The reason the same approach cannot be used to prove
the converse here is that the set

S =
{
(xTP0x, . . . , x

TPmx) ∈ Rm+1
∣∣∣ x ∈ Rm

}
is only guaranteed to be convex when m = 1.
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