ME 7247: Advanced Control Systems

Supplementary notes

The Linear Quadratic Regulator

v.1.0 (11.07.2022)

In these notes, we will derive the solution to the finite-horizon linear quadratic regulator (LQR) problem in several different ways. Fundamentally, LQR can be viewed as a large least-squares problem, but we are interested in the recursive solution because it can be efficiently computed (storage and computation scale linearly with the length of the time horizon).

1 The LQR problem

We consider the discrete-time finite-horizon version of the LQR problem. Consider the dynamical system with initial state x_0 and

$$x_{t+1} = Ax_t + Bu_t$$
 for $t = 0, \dots, N-1$ (1)

The objective is to find a sequence of decisions u_0, \ldots, u_{N-1} that minimizes the quadratic cost

$$J = \sum_{t=0}^{N-1} \underbrace{\begin{bmatrix} x_t \\ u_t \end{bmatrix}}^{\mathsf{T}} \begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}}_{\text{stage cost}} + \underbrace{x_N^{\mathsf{T}} Q_f x_N}_{\text{terminal cost}}$$
 (2)

The only assumptions we make are that $\begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \succeq 0$, $Q_f \succeq 0$, and $R \succ 0$. These assumptions ensure that the cost will remain bounded. We first state result, and then we derive it in many ways.

Theorem 1. The optimal decisions that solve the LQR problem are given by the state feedback policy $u_t = K_t x_t$ for t = 0, ..., N - 1. We can compute the optimal policy recursively in an offline fashion by starting at t = N and working backwards to t = 0. The recursion is:

$$P_N = Q_f (3a)$$

$$P_{t} = A^{\mathsf{T}} P_{t+1} A + Q - (A^{\mathsf{T}} P_{t+1} B + S) (B^{\mathsf{T}} P_{t+1} B + R)^{-1} (B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}})$$
(3b)

$$K_t = -(B^{\mathsf{T}} P_{t+1} B + R)^{-1} (B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}})$$
(3c)

The optimal cost starting from initial condition x_0 is given by $J_{\star} = x_0^{\mathsf{T}} P_0 x_0$.

Note: We can make the state and cost matrices time-varying if we like, i.e. A_t, B_t, Q_t, S_t, R_t . The solution is exactly analogous. We just have to make the recursion time-varying. So:

$$P_{t} = A_{t}^{\mathsf{T}} P_{t+1} A_{t} + Q_{t} - (A_{t}^{\mathsf{T}} P_{t+1} B_{t} + S_{t}) (B_{t}^{\mathsf{T}} P_{t+1} B_{t} + R_{t})^{-1} (B_{t}^{\mathsf{T}} P_{t+1} A_{t} + S_{t}^{\mathsf{T}})$$

$$K_{t} = -(B_{t}^{\mathsf{T}} P_{k+1} B_{t} + R_{t})^{-1} (B_{t}^{\mathsf{T}} P_{k+1} A_{t} + S_{t}^{\mathsf{T}})$$

In fact, we can even make the sizes of all matrices time-varying! For example, the state x_t and input u_t could have different sizes as t changes.

1.1 Solution via dynamic programming

Define the cost-to-go (optimal value function) for k = 0, ..., N as

$$V_k(z) := \underset{u_k, \dots, u_{N-1}}{\text{minimize}} \quad \sum_{t=k}^{N-1} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} + x_N^\mathsf{T} Q_f x_N$$
s.t.
$$x_{t+1} = Ax_t + Bu_t \quad \text{for } t = k, \dots, N-1$$

$$x_k = z$$

Our ultimate goal is to find $V_0(x_0)$, but we will solve for all V_k for k = 0, ..., N. By defining $w := u_k$ and decomposing the value function by separating the first decision at time k from all subsequent decisions, we can show that the following recursive equation (the Bellman equation) holds:

$$V_k(z) = \min_{w} \left(\begin{bmatrix} z \\ w \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} + V_{k+1}(Az + Bw) \right) \quad \text{for } k = 0, \dots, N-1.$$
 (4)

When k = z, we have $V_N(z) = z^{\mathsf{T}} Q_f z$. We can show by induction that $V_k(z)$ is a positive semidefinite quadratic for all $k \leq N$. Suppose that $V_t(z) = z^{\mathsf{T}} P_t z$ with $P_t \succeq 0$ for t = k + 1. We will prove that this holds for t = k as well. Substitute into Eq. (4) and obtain

$$V_k(z) = \min_{w} \left(\begin{bmatrix} z \\ w \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} + (Az + Bw)^{\mathsf{T}} P_{k+1} (Az + Bw) \right)$$
 (5)

$$= \min_{w} \begin{bmatrix} z \\ w \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A^{\mathsf{T}} P_{k+1} A + Q & A^{\mathsf{T}} P_{k+1} B + S \\ B^{\mathsf{T}} P_{k+1} A + S^{\mathsf{T}} & B^{\mathsf{T}} P_{k+1} B + R \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix}$$
 (6)

This is a standard quadratic optimization problem. Due to our assumption that $P_{k+1} \succeq 0$ and $R \succ 0$, the solution is

$$w^* = -(B^{\mathsf{T}} P_{k+1} B + R)^{-1} (B^{\mathsf{T}} P_{k+1} A + S^{\mathsf{T}}) z$$

$$V_k(z) = z^{\mathsf{T}} \left(A^{\mathsf{T}} P_{k+1} A + Q - (A^{\mathsf{T}} P_{k+1} B + S) (B^{\mathsf{T}} P_{k+1} B + R)^{-1} (B^{\mathsf{T}} P_{k+1} A + S^{\mathsf{T}}) \right) z$$

We deduce that $V_k(z)$ is also quadratic, and P_k satisfies the recursion (3a)–(3b) Since $w = u_k$ and $z = x_k$, we also find that the optimal policy is a state-feedback policy of the form $u_t = K_t x_t$, where K_t is given by (3c). The cost associated with using the optimal control policy starting from the state x_0 is the cost to go $V_0(x_0)$, which is given by $x_0^{\mathsf{T}} P_0 x_0$.

Note. We assumed $\begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \succeq 0$ and $R \succ 0$, so we can prove by induction that since $P_N = Q_f \succeq 0$, each $V_t(z) = z^{\mathsf{T}} P_t z$ is the minimum of a positive definite quadratic function (5), and is therefore positive semidefinite, and we have $P_t \succeq 0$ for all t.

The above dynamic programming approach works even when the system matrices are time-varying or even have different sizes as a function of time.

1.2 Solution via completing the square

Consider the cost we are trying to minimize:

$$J(x_0) = \sum_{t=0}^{N-1} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} + x_N^\mathsf{T} Q_f x_N$$

Let's introduce a set of matrices P_0, P_1, \ldots, P_N and include them into the sum as follows.

$$J(x_0) = x_0^{\mathsf{T}} P_0 x_0 + \sum_{t=0}^{N-1} \left(x_{t+1} P_{t+1} x_{t+1} - x_t^{\mathsf{T}} P_t x_t + \begin{bmatrix} x_t \\ u_t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} Q & S \\ S^{\mathsf{T}} & R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} \right) + x_N^{\mathsf{T}} (Q_f - P_N) x_N.$$

Note that all the P_t 's cancel out, so the above expression is equal to $J(x_0)$ no matter what values we pick for the P_t 's. Start by substituting $x_{t+1} = Ax_t + Bu_t$ in the sum and it becomes

$$J(x_0) = x_0^{\mathsf{T}} P_0 x_0 + \sum_{t=0}^{N-1} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A^{\mathsf{T}} P_{t+1} A - P_t + Q & A^{\mathsf{T}} P_{t+1} B + S \\ B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}} & B^{\mathsf{T}} P_{t+1} B + R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} + x_N^{\mathsf{T}} (Q_f - P_N) x_N.$$

Recall the completion of squares formula (LDU factorization):

$$\begin{bmatrix} x \\ u \end{bmatrix}^\mathsf{T} \begin{bmatrix} A & B \\ B^\mathsf{T} & C \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} = x^\mathsf{T} \left(A - BC^{-1}B^\mathsf{T} \right) x + \left(u - C^{-1}B^\mathsf{T}x \right)^\mathsf{T} C \left(u - C^{-1}B^\mathsf{T}x \right)$$

Applying this to the quadratic form in the sum, we obtain:

$$J(x_0) = x_0^{\mathsf{T}} P_0 x_0$$

$$+ \sum_{t=0}^{N-1} x_t^{\mathsf{T}} \left(A^{\mathsf{T}} P_{t+1} A - P_t + Q - (A^{\mathsf{T}} P_{t+1} B + S) (B^{\mathsf{T}} P_{t+1} B + R)^{-1} (B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}}) \right) x_t$$

$$+ \sum_{t=0}^{N-1} (u_t - K_t x_t)^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) (u_t - K_t x_t) + x_N^{\mathsf{T}} (Q_f - P_N) x_N$$

where we defined K_t as in (3c). Again, remember that this expression for $J(x_0)$ does not depend on the choice of the P_t 's. So we can choose them however we like. In particular, if we choose P_t so that it satisfies (3a)–(3b), the sum simplifies greatly to

$$J(x_0) = x_0^{\mathsf{T}} P_0 x_0 + \sum_{t=0}^{N-1} (u_t - K_t x_t)^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) (u_t - K_t x_t).$$
 (7)

We also have $P_t \succeq 0$ for all t (see the note at the end of Section 1.1). Therefore each term in the sum is nonnegative. We can minimize $J(x_0)$ by picking $u_t = K_t x_t$, which leaves us with the optimal cost $J_{\star} = x_0^{\mathsf{T}} P_0 x_0$.

Note. If we use a *suboptimal* policy \hat{K}_t instead of the optimal K_t , then the formula (7) reveals exactly the extra cost we will have to pay. In particular,

$$J_{\text{extra}} = \sum_{t=0}^{N-1} x_t^{\mathsf{T}} (\hat{K}_t - K_t)^{\mathsf{T}} (B^{\mathsf{T}} P_{t+1} B + R) (\hat{K}_t - K_t) x_t$$

1.3 Solution via block elimination

We will make use of block variable elimination. Here is a useful result that is easy to prove.

Proposition 1 (block elimination). Suppose we have linear equations of the form

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ 0 \end{bmatrix},$$

where D is square and invertible. If we solve for y in the second equation and substitute the result into the first equation, we obtain

$$(A - BD^{-1}C)x = p \qquad and \qquad y = -D^{-1}Cx.$$

We will make use of this result throughout the following derivation.

Write out the objective and all constraints as a large optimization problem. Here, we treat both the states and inputs as variables, and we include the state dynamics as constraints.

$$\underset{x_1,\dots,x_N,\\u_0,\dots,u_{N-1}}{\text{minimize}} \quad \sum_{t=0}^{N-1} \begin{bmatrix} x_t\\u_t \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S\\S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} x_t\\u_t \end{bmatrix} + x_N^\mathsf{T} Q_f x_N$$
s.t.
$$x_{t+1} = Ax_t + Bu_t \quad \text{for } t = 0,\dots, N-1$$

Assign the Lagrange multiplier λ_{t+1} to the equality constraints for $t = 0, \dots, N-1$. The Lagrangian for the problem is therefore:

$$L(x, u, \lambda) = \frac{1}{2} \sum_{t=0}^{N-1} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^\mathsf{T} \begin{bmatrix} Q & S \\ S^\mathsf{T} & R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} + \frac{1}{2} x_N^\mathsf{T} Q_f x_N - \sum_{t=0}^{N-1} \lambda_{t+1}^\mathsf{T} \left(x_{t+1} - A x_t - B u_t \right)$$

The factors of $\frac{1}{2}$ are there to make the algebra nicer. The KKT necessary conditions for optimality are $\nabla_x L = 0$, $\nabla_u L = 0$, and $\nabla_{\lambda} L = 0$. Evaluating these gradients, we obtain the equations

$$Qx_t + Su_t + A^{\mathsf{T}}\lambda_{t+1} - \lambda_t = 0$$
 for $t = 0, ..., N - 1$
 $Q_f x_N - \lambda_N = 0$
 $S^{\mathsf{T}}x_t + Ru_t + B^{\mathsf{T}}\lambda_{t+1} = 0$ for $t = 0, ..., N - 1$
 $Ax_t + Bu_t - x_{t+1} = 0$ for $t = 0, ..., N - 1$

Merging these together as a single set of linear equations, we obtain:

$$\lambda_N = Q_f x_N \tag{8a}$$

$$\begin{bmatrix} \lambda_t \\ 0 \\ x_{t+1} \end{bmatrix} = \begin{bmatrix} Q & S & A^\mathsf{T} \\ S^\mathsf{T} & R & B^\mathsf{T} \\ A & B & 0 \end{bmatrix} \begin{bmatrix} x_t \\ u_t \\ \lambda_{t+1} \end{bmatrix} \quad \text{for } t = 0, \dots, N-1$$
 (8b)

We will prove by induction that $\lambda_t = P_t x_t$ for all t. From (8a), the result holds for t = N with $P_N = Q_f$. Suppose it holds for t + 1. Substitute $\lambda_{t+1} = P_{t+1} x_{t+1}$ into (8b) and obtain:

$$\begin{bmatrix} \lambda_t \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} Q & S & A^\mathsf{T} P_{t+1} \\ S^\mathsf{T} & R & B^\mathsf{T} P_{t+1} \\ A & B & -I \end{bmatrix} \begin{bmatrix} x_t \\ u_t \\ x_{t+1} \end{bmatrix}$$
(9)

Apply Proposition 1 to eliminate x_{t+1} from (9), which leads to:

$$\begin{bmatrix} \lambda_t \\ 0 \end{bmatrix} = \begin{bmatrix} A^\mathsf{T} P_{t+1} A + Q & A^\mathsf{T} P_{t+1} B + S \\ B^\mathsf{T} P_{t+1} A + S^\mathsf{T} & B^\mathsf{T} P_{t+1} B + R \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}$$

Apply Proposition 1 once more to eliminate u_t , which leads to:

$$\lambda_t = \left(A^{\mathsf{T}} P_{t+1} A + Q - (A^{\mathsf{T}} P_{t+1} B + S) (B^{\mathsf{T}} P_{t+1} B + R)^{-1} (B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}}) \right) x_t$$
$$u_t = -(B^{\mathsf{T}} P_{t+1} B + R)^{-1} (B^{\mathsf{T}} P_{t+1} A + S^{\mathsf{T}}) x_t$$

Therefore, we have $\lambda_t = P_t x_t$, which is what we wanted to prove, and the recursion for P_t and the expression for K_t are precisely the solution we previously found in Eq. (3).

Alternative elimination ordering. If we eliminate the variables in a different order, we get different (but equivalent) expressions for the P_t recursion and for K_t . Specifically, if we start from (9) but apply Proposition 1 to eliminate u_t first, we obtain:

$$\begin{bmatrix} \lambda_t \\ 0 \end{bmatrix} = \begin{bmatrix} Q - SR^{-1}S^{\mathsf{T}} & A^{\mathsf{T}}P_{t+1} - SR^{-1}B^{\mathsf{T}}P_{t+1} \\ A - BR^{-1}S^{\mathsf{T}} & -I - BR^{-1}B^{\mathsf{T}}P_{t+1} \end{bmatrix} \begin{bmatrix} x_t \\ x_{t+1} \end{bmatrix}$$
$$u_t = -R^{-1}(S^{\mathsf{T}}x_t + B^{\mathsf{T}}P_{t+1}x_{t+1})$$

To ease the notation, define:

$$E := A - BR^{-1}S^{\mathsf{T}}$$
 $G := BR^{-1}B^{\mathsf{T}}$ $\bar{Q} := Q - SR^{-1}S^{\mathsf{T}}$

Based on our original problem assumptions, we have $G \succeq 0$ and $\bar{Q} \succeq 0$. Using our new variable definitions, the equations simplify to:

$$\begin{bmatrix} \lambda_t \\ 0 \end{bmatrix} = \begin{bmatrix} \bar{Q} & E^\mathsf{T} P_{t+1} \\ E & -(I + G P_{t+1}) \end{bmatrix} \begin{bmatrix} x_t \\ x_{t+1} \end{bmatrix}$$
$$u_t = -R^{-1} (S^\mathsf{T} x_t + B^\mathsf{T} P_{t+1} x_{t+1})$$

Now apply Proposition 1 to eliminate x_{t+1} and obtain:

$$\lambda_t = \left(\bar{Q} + E^{\mathsf{T}} P_{t+1} (I + G P_{t+1})^{-1} E\right) x_t$$

$$u_t = -R^{-1} \left(S^{\mathsf{T}} + B^{\mathsf{T}} P_{t+1} (I + G P_{t+1})^{-1} E\right) x_t$$

$$x_{t+1} = (I + G P_{t+1})^{-1} E x_t$$

This yields new (but equivalent!) formulas for the optimal controller (3) and the optimal closed-loop matrix $A + BK_t$.

$$P_{N} = Q_{f}$$

$$P_{t} = \bar{Q} + E^{\mathsf{T}} P_{t+1} (I + G P_{t+1})^{-1} E$$

$$K_{t} = -R^{-1} (S^{\mathsf{T}} + B^{\mathsf{T}} P_{t+1} (I + G P_{t+1})^{-1} E)$$

$$A + BK_{t} = (I + G P_{t+1})^{-1} E$$

$$(10)$$

1.4 Solution via adjoint equations

This approach is similar to the block elimination approach of Section 1.3. We start with (8):

$$\lambda_N = Q_f x_N \tag{11a}$$

$$\begin{bmatrix} \lambda_t \\ 0 \\ x_{t+1} \end{bmatrix} = \begin{bmatrix} Q & S & A^\mathsf{T} \\ S^\mathsf{T} & R & B^\mathsf{T} \\ A & B & 0 \end{bmatrix} \begin{bmatrix} x_t \\ u_t \\ \lambda_{t+1} \end{bmatrix} \quad \text{for } t = 0, \dots, N-1$$
 (11b)

Eliminate u_t right away using Proposition 1 and use the same new variables as in Section 1.3:

$$E := A - BR^{-1}S^\mathsf{T} \qquad G := BR^{-1}B^\mathsf{T} \qquad \bar{Q} := Q - SR^{-1}S^\mathsf{T}$$

This yields the so-called *adjoint equations*:

$$\lambda_N = Q_f x_N \tag{12a}$$

$$\begin{bmatrix} x_{t+1} \\ \lambda_t \end{bmatrix} = \begin{bmatrix} E & -G \\ \bar{Q} & E^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_{t+1} \end{bmatrix}$$
 (12b)

This is a difference equation with the state x_t equation evolving forward in time and co-state λ_t equation evolving backward in time. There is also a boundary condition that couples the variables at the terminal timestep. From here, we could prove $\lambda_t = P_t x_t$ using induction as we did in Section 1.3. Another approach is to rearrange (12) so that both equations go forward in time, which yields

$$\lambda_N = Q_f x_N \tag{13a}$$

$$\begin{bmatrix} I & G \\ 0 & E^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_{t+1} \\ \lambda_{t+1} \end{bmatrix} = \begin{bmatrix} E & 0 \\ -\bar{Q} & I \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t \end{bmatrix}$$
 (13b)

If E is invertible, we can invert the matrix on the left-hand side and write the equations as

$$\lambda_N = Q_f x_N$$

$$\begin{bmatrix} x_{t+1} \\ \lambda_{t+1} \end{bmatrix} = \begin{bmatrix} E + G E^{-\mathsf{T}} \bar{Q} & -G E^{-\mathsf{T}} \\ -E^{-\mathsf{T}} \bar{Q} & E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t \end{bmatrix}$$

The 2×2 block matrix above is a *symplectic matrix* and has some useful properties, such as if λ is an eigenvalue, so is λ^{-1} . Such matrices play an important role in the study of Algebraic Riccati Equations. Consider a set of matrices P_0, P_1, \ldots, P_N and write:

$$\begin{bmatrix} x_{t+1} \\ \lambda_{t+1} - P_{t+1}x_{t+1} \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ -P_{t+1} & I \end{bmatrix} \begin{bmatrix} x_{t+1} \\ \lambda_{t+1} \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ -P_{t+1} & I \end{bmatrix} \begin{bmatrix} E + GE^{-\mathsf{T}}\bar{Q} & -GE^{-\mathsf{T}} \\ -E^{-\mathsf{T}}\bar{Q} & E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ -P_{t+1} & I \end{bmatrix} \begin{bmatrix} E + GE^{-\mathsf{T}}\bar{Q} & -GE^{-\mathsf{T}} \\ -E^{-\mathsf{T}}\bar{Q} & E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} I & 0 \\ P_t & I \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t - P_t x_t \end{bmatrix}$$

$$= \begin{bmatrix} E + GE^{-\mathsf{T}}\bar{Q} - GE^{-\mathsf{T}}P_t & -GE^{-\mathsf{T}} \\ -P_{t+1}E - P_{t+1}GE^{-\mathsf{T}}\bar{Q} + P_{t+1}GE^{-\mathsf{T}}P_t + E^{-\mathsf{T}}P_t - E^{-\mathsf{T}}\bar{Q} & P_{t+1}GE^{-\mathsf{T}} + E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t - P_t x_t \end{bmatrix}$$

Note that this holds for any choice of the P_t , since we added and subtracted it without changing anything. Consider the (2,1) block of the transition matrix:

$$-P_{t+1}E - P_{t+1}GE^{-\mathsf{T}}\bar{Q} + P_{t+1}GE^{-\mathsf{T}}P_t + E^{-\mathsf{T}}P_t - E^{-\mathsf{T}}\bar{Q}$$

= $-P_{t+1}E + (P_{t+1}G + I)E^{-\mathsf{T}}(P_t - \bar{Q})$

This can be made zero if we choose $P_t = \bar{Q} + E^{\mathsf{T}} P_{t+1} (I + G P_{t+1})^{-1} E$, which is precisely the alternative form for the solution we derived in (10). With this choice, our adjoint equations become:

$$\begin{bmatrix} x_{t+1} \\ \lambda_{t+1} - P_{t+1}x_{t+1} \end{bmatrix} = \begin{bmatrix} E + GE^{-\mathsf{T}}\bar{Q} - GE^{-\mathsf{T}}P_t & -GE^{-\mathsf{T}} \\ 0 & P_{t+1}GE^{-\mathsf{T}} + E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t - P_tx_t \end{bmatrix}$$

Substituting for P_t and simplifying, we obtain

$$\begin{bmatrix} x_{t+1} \\ \lambda_{t+1} - P_{t+1} x_{t+1} \end{bmatrix} = \begin{bmatrix} (I + G P_{t+1})^{-1} E & -G E^{-\mathsf{T}} \\ 0 & (I + P_{t+1} G) E^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t - P_t x_t \end{bmatrix}$$

Now recall from (10) that $A + BK_t = (I + GP_{t+1})^{-1}E$, so we have:

$$\begin{bmatrix} x_{t+1} \\ \lambda_{t+1} - P_{t+1} x_{t+1} \end{bmatrix} = \begin{bmatrix} A + BK_t & -GE^{-\mathsf{T}} \\ 0 & (A + BK_t)^{-\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_t \\ \lambda_t - P_t x_t \end{bmatrix}$$

From here, we easily see that if $\lambda_{t+1} = P_{t+1}x_{t+1}$, then we must also have $\lambda_t = P_tx_t$ and this completes the proof. The equations also simplify to $x_{t+1} = (A + BK_t)x_t$, which are the closed-loop equations we expected to see.

Infinte-horizon LQR. This formulation using the adjoint equation is particularly useful when solving the infinite-horizon LQR problem. In the infinite-horizon setting, we have $P_t = P_{t+1} = P$, so the transformation of the symplectic matrix preserves eigenvalues, and we have:

$$\begin{bmatrix} I & 0 \\ -P & I \end{bmatrix} \underbrace{\begin{bmatrix} E + GE^{-\mathsf{T}}\bar{Q} & -GE^{-\mathsf{T}} \\ -E^{-\mathsf{T}}\bar{Q} & E^{-\mathsf{T}} \end{bmatrix}}_{M} \begin{bmatrix} I & 0 \\ P & I \end{bmatrix} = \begin{bmatrix} A + BK & -GE^{-\mathsf{T}} \\ 0 & (A + BK)^{-\mathsf{T}} \end{bmatrix}. \tag{14}$$

This observation is the key to solving the Discrete Algebraic Riccati Equation (DARE): eigenvalues of the symplectic matrix M are the eigenvalues of the LQR-optimal closed-loop map (stable) and their conjugate inverses (unstable). Multiply (14) by $\begin{bmatrix} I & 0 \\ P & I \end{bmatrix} (\dots) \begin{bmatrix} I \\ 0 \end{bmatrix}$ and obtain

$$M\begin{bmatrix} I \\ P \end{bmatrix} = \begin{bmatrix} I \\ P \end{bmatrix} (A + BK). \tag{15}$$

The stable eigenvalues of M are the eigenvalues of (A + BK). So if we diagonalize M and collect all stable eigenvalues in the diagonal matrix Λ , we can write the eigenvalue decomposition

$$M \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \Lambda.$$

Under suitable assumptions, V_1 will be invertible. Multiply on the right by V_1^{-1} and obtain

$$M \begin{bmatrix} I \\ V_2 V_1^{-1} \end{bmatrix} = \begin{bmatrix} I \\ V_2 V_1^{-1} \end{bmatrix} (V_1 \Lambda V_1^{-1}).$$

Note the similarity with (15). It takes some work to prove the details, but it turns out that $P = V_2 V_1^{-1}$ is the (unique) stabilizing solution to the DARE, and $V_1 \Lambda V_1^{-1} = A + BK$ is the LQR-optimal closed-loop map.