
ME 7247: Advanced Control Systems Supplementary notes

The Linear Quadratic Regulator
v.1.0 (11.07.2022)

In these notes, we will derive the solution to the finite-horizon linear quadratic regulator (LQR)
problem in several different ways. Fundamentally, LQR can be viewed as a large least-squares
problem, but we are interested in the recursive solution because it can be efficiently computed
(storage and computation scale linearly with the length of the time horizon).

1 The LQR problem

We consider the discrete-time finite-horizon version of the LQR problem. Consider the dynamical
system with initial state x0 and

xt+1 = Axt +But for t = 0, . . . , N − 1 (1)

The objective is to find a sequence of decisions u0, . . . , uN−1 that minimizes the quadratic cost

J =
N−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
︸ ︷︷ ︸

stage cost

+ xT
NQfxN︸ ︷︷ ︸

terminal cost

(2)

The only assumptions we make are that
[

Q S

ST R

]
⪰ 0, Qf ⪰ 0, and R ≻ 0. These assumptions ensure

that the cost will remain bounded. We first state result, and then we derive it in many ways.

Theorem 1. The optimal decisions that solve the LQR problem are given by the state feedback
policy ut = Ktxt for t = 0, . . . , N − 1. We can compute the optimal policy recursively in an
offline fashion by starting at t = N and working backwards to t = 0. The recursion is:

PN = Qf (3a)

Pt = ATPt+1A+Q− (ATPt+1B + S)(BTPt+1B +R)−1(BTPt+1A+ ST) (3b)

Kt = −(BTPt+1B +R)−1(BTPt+1A+ ST) (3c)

The optimal cost starting from initial condition x0 is given by J⋆ = xT
0P0x0.

Note: We can make the state and cost matrices time-varying if we like, i.e. At, Bt, Qt, St, Rt. The
solution is exactly analogous. We just have to make the recursion time-varying. So:

Pt = AT
t Pt+1At +Qt − (AT

t Pt+1Bt + St)(B
T
t Pt+1Bt +Rt)

−1(BT
t Pt+1At + ST

t )

Kt = −(BT
t Pk+1Bt +Rt)

−1(BT
t Pk+1At + ST

t )

In fact, we can even make the sizes of all matrices time-varying ! For example, the state xt and
input ut could have different sizes as t changes.

1



1.1 Solution via dynamic programming

Define the cost-to-go (optimal value function) for k = 0, . . . , N as

Vk(z) := minimize
uk,...,uN−1

N−1∑
t=k

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+ xT

NQfxN

s.t. xt+1 = Axt +But for t = k, . . . , N − 1

xk = z

Our ultimate goal is to find V0(x0), but we will solve for all Vk for k = 0, . . . , N . By defining w := uk
and decomposing the value function by separating the first decision at time k from all subsequent
decisions, we can show that the following recursive equation (the Bellman equation) holds:

Vk(z) = min
w

([
z
w

]T [
Q S
ST R

] [
z
w

]
+ Vk+1(Az +Bw)

)
for k = 0, . . . , N − 1. (4)

When k = z, we have VN (z) = zTQfz. We can show by induction that Vk(z) is a positive semidefi-
nite quadratic for all k ≤ N . Suppose that Vt(z) = zTPtz with Pt ⪰ 0 for t = k + 1. We will prove
that this holds for t = k as well. Substitute into Eq. (4) and obtain

Vk(z) = min
w

([
z
w

]T [
Q S
ST R

] [
z
w

]
+ (Az +Bw)TPk+1(Az +Bw)

)
(5)

= min
w

[
z
w

]T [
ATPk+1A+Q ATPk+1B + S
BTPk+1A+ ST BTPk+1B +R

] [
z
w

]
(6)

This is a standard quadratic optimization problem. Due to our assumption that Pk+1 ⪰ 0 and
R ≻ 0, the solution is

w⋆ = −(BTPk+1B +R)−1(BTPk+1A+ ST)z

Vk(z) = zT
(
ATPk+1A+Q− (ATPk+1B + S)(BTPk+1B +R)−1(BTPk+1A+ ST)

)
z

We deduce that Vk(z) is also quadratic, and Pk satisfies the recursion (3a)–(3b) Since w = uk and
z = xk, we also find that the optimal policy is a state-feedback policy of the form ut = Ktxt, where
Kt is given by (3c). The cost associated with using the optimal control policy starting from the
state x0 is the cost to go V0(x0), which is given by xT

0P0x0.

Note. We assumed
[

Q S

ST R

]
⪰ 0 and R ≻ 0, so we can prove by induction that since PN = Qf ⪰ 0,

each Vt(z) = zTPtz is the minimum of a positive definite quadratic function (5), and is therefore
positive semidefinite, and we have Pt ⪰ 0 for all t.

The above dynamic programming approach works even when the system matrices are time-varying
or even have different sizes as a function of time.

2



1.2 Solution via completing the square

Consider the cost we are trying to minimize:

J(x0) =
N−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+ xT

NQfxN

Let’s introduce a set of matrices P0, P1, . . . , PN and include them into the sum as follows.

J(x0) = xT
0P0x0 +

N−1∑
t=0

(
xt+1Pt+1xt+1 − xT

t Ptxt +

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

])
+ xT

N (Qf − PN )xN .

Note that all the Pt’s cancel out, so the above expression is equal to J(x0) no matter what values
we pick for the Pt’s. Start by substituting xt+1 = Axt +But in the sum and it becomes

J(x0) = xT
0P0x0 +

N−1∑
t=0

[
xt
ut

]T [
ATPt+1A− Pt +Q ATPt+1B + S
BTPt+1A+ ST BTPt+1B +R

] [
xt
ut

]
+ xT

N (Qf − PN )xN .

Recall the completion of squares formula (LDU factorization):[
x
u

]T [
A B
BT C

] [
x
u

]
= xT

(
A−BC−1BT

)
x+

(
u− C−1BTx

)T
C
(
u− C−1BTx

)
Applying this to the quadratic form in the sum, we obtain:

J(x0) = xT
0P0x0

+
N−1∑
t=0

xT
t

(
ATPt+1A− Pt +Q− (ATPt+1B + S)(BTPt+1B +R)−1(BTPt+1A+ ST)

)
xt

+
N−1∑
t=0

(ut −Ktxt)
T(BTPt+1B +R)(ut −Ktxt) + xT

N (Qf − PN )xN

where we defined Kt as in (3c). Again, remember that this expression for J(x0) does not depend
on the choice of the Pt’s. So we can choose them however we like. In particular, if we choose Pt so
that it satisfies (3a)–(3b), the sum simplifies greatly to

J(x0) = xT
0P0x0 +

N−1∑
t=0

(ut −Ktxt)
T(BTPt+1B +R)(ut −Ktxt). (7)

We also have Pt ⪰ 0 for all t (see the note at the end of Section 1.1). Therefore each term in the
sum is nonnegative. We can minimize J(x0) by picking ut = Ktxt, which leaves us with the optimal
cost J⋆ = xT

0P0x0.

Note. If we use a suboptimal policy K̂t instead of the optimal Kt, then the formula (7) reveals
exactly the extra cost we will have to pay. In particular,

Jextra =

N−1∑
t=0

xT
t (K̂t −Kt)

T(BTPt+1B +R)(K̂t −Kt)xt

3



1.3 Solution via block elimination

We will make use of block variable elimination. Here is a useful result that is easy to prove.

Proposition 1 (block elimination). Suppose we have linear equations of the form[
A B
C D

] [
x
y

]
=

[
p
0

]
,

where D is square and invertible. If we solve for y in the second equation and substitute the result
into the first equation, we obtain

(A−BD−1C)x = p and y = −D−1Cx.

We will make use of this result throughout the following derivation.

Write out the objective and all constraints as a large optimization problem. Here, we treat both
the states and inputs as variables, and we include the state dynamics as constraints.

minimize
x1,...,xN ,
u0,...,uN−1

N−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+ xT

NQfxN

s.t. xt+1 = Axt +But for t = 0, . . . , N − 1

Assign the Lagrange multiplier λt+1 to the equality constraints for t = 0, . . . , N−1. The Lagrangian
for the problem is therefore:

L(x, u, λ) =
1

2

N−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+

1

2
xT
NQfxN −

N−1∑
t=0

λT
t+1 (xt+1 −Axt −But)

The factors of 1
2 are there to make the algebra nicer. The KKT necessary conditions for optimality

are ∇xL = 0, ∇uL = 0, and ∇λL = 0. Evaluating these gradients, we obtain the equations

Qxt + Sut +ATλt+1 − λt = 0 for t = 0, . . . , N − 1

QfxN − λN = 0

STxt +Rut +BTλt+1 = 0 for t = 0, . . . , N − 1

Axt +But − xt+1 = 0 for t = 0, . . . , N − 1

Merging these together as a single set of linear equations, we obtain:

λN = QfxN (8a) λt

0
xt+1

 =

Q S AT

ST R BT

A B 0

 xt
ut

λt+1

 for t = 0, . . . , N − 1 (8b)

We will prove by induction that λt = Ptxt for all t. From (8a), the result holds for t = N with
PN = Qf . Suppose it holds for t+ 1. Substitute λt+1 = Pt+1xt+1 into (8b) and obtain:λt

0
0

 =

Q S ATPt+1

ST R BTPt+1

A B −I

 xt
ut
xt+1

 (9)

4



Apply Proposition 1 to eliminate xt+1 from (9), which leads to:[
λt

0

]
=

[
ATPt+1A+Q ATPt+1B + S
BTPt+1A+ ST BTPt+1B +R

] [
xt
ut

]
Apply Proposition 1 once more to eliminate ut, which leads to:

λt =
(
ATPt+1A+Q− (ATPt+1B + S)(BTPt+1B +R)−1(BTPt+1A+ ST)

)
xt

ut = −(BTPt+1B +R)−1(BTPt+1A+ ST)xt

Therefore, we have λt = Ptxt, which is what we wanted to prove, and the recursion for Pt and the
expression for Kt are precisely the solution we previously found in Eq. (3).

Alternative elimination ordering. If we eliminate the variables in a different order, we get
different (but equivalent) expressions for the Pt recursion and for Kt. Specifically, if we start from
(9) but apply Proposition 1 to eliminate ut first, we obtain:[

λt

0

]
=

[
Q− SR−1ST ATPt+1 − SR−1BTPt+1

A−BR−1ST −I −BR−1BTPt+1

] [
xt
xt+1

]
ut = −R−1

(
STxt +BTPt+1xt+1

)
To ease the notation, define:

E := A−BR−1ST G := BR−1BT Q̄ := Q− SR−1ST

Based on our original problem assumptions, we have G ⪰ 0 and Q̄ ⪰ 0. Using our new variable
definitions, the equations simplify to:[

λt

0

]
=

[
Q̄ ETPt+1

E −(I +GPt+1)

] [
xt
xt+1

]
ut = −R−1

(
STxt +BTPt+1xt+1

)
Now apply Proposition 1 to eliminate xt+1 and obtain:

λt =
(
Q̄+ ETPt+1(I +GPt+1)

−1E
)
xt

ut = −R−1
(
ST +BTPt+1(I +GPt+1)

−1E
)
xt

xt+1 = (I +GPt+1)
−1Ext

This yields new (but equivalent!) formulas for the optimal controller (3) and the optimal closed-loop
matrix A+BKt.

PN = Qf

Pt = Q̄+ ETPt+1(I +GPt+1)
−1E

Kt = −R−1
(
ST +BTPt+1(I +GPt+1)

−1E
)

A+BKt = (I +GPt+1)
−1E

(10)

5



1.4 Solution via adjoint equations

This approach is similar to the block elimination approach of Section 1.3. We start with (8):

λN = QfxN (11a) λt

0
xt+1

 =

Q S AT

ST R BT

A B 0

 xt
ut

λt+1

 for t = 0, . . . , N − 1 (11b)

Eliminate ut right away using Proposition 1 and use the same new variables as in Section 1.3:

E := A−BR−1ST G := BR−1BT Q̄ := Q− SR−1ST

This yields the so-called adjoint equations:

λN = QfxN (12a)[
xt+1

λt

]
=

[
E −G
Q̄ ET

] [
xt

λt+1

]
(12b)

This is a difference equation with the state xt equation evolving forward in time and co-state λt

equation evolving backward in time. There is also a boundary condition that couples the variables at
the terminal timestep. From here, we could prove λt = Ptxt using induction as we did in Section 1.3.
Another approach is to rearrange (12) so that both equations go forward in time, which yields

λN = QfxN (13a)[
I G
0 ET

] [
xt+1

λt+1

]
=

[
E 0
−Q̄ I

] [
xt
λt

]
(13b)

If E is invertible, we can invert the matrix on the left-hand side and write the equations as

λN = QfxN[
xt+1

λt+1

]
=

[
E +GE−TQ̄ −GE−T

−E−TQ̄ E−T

] [
xt
λt

]
The 2 × 2 block matrix above is a symplectic matrix and has some useful properties, such as if λ
is an eigenvalue, so is λ−1. Such matrices play an important role in the study of Algebraic Riccati
Equations. Consider a set of matrices P0, P1, . . . , PN and write:[

xt+1

λt+1 − Pt+1xt+1

]
=

[
I 0

−Pt+1 I

] [
xt+1

λt+1

]
=

[
I 0

−Pt+1 I

] [
E +GE−TQ̄ −GE−T

−E−TQ̄ E−T

] [
xt
λt

]
=

[
I 0

−Pt+1 I

] [
E +GE−TQ̄ −GE−T

−E−TQ̄ E−T

] [
I 0
Pt I

] [
xt

λt − Ptxt

]
=

[
E +GE−TQ̄−GE−TPt −GE−T

−Pt+1E − Pt+1GE−TQ̄+ Pt+1GE−TPt + E−TPt − E−TQ̄ Pt+1GE−T + E−T

] [
xt

λt − Ptxt

]

6



Note that this holds for any choice of the Pt, since we added and subtracted it without changing
anything. Consider the (2, 1) block of the transition matrix:

− Pt+1E − Pt+1GE−TQ̄+ Pt+1GE−TPt + E−TPt − E−TQ̄

= −Pt+1E + (Pt+1G+ I)E−T(Pt − Q̄)

This can be made zero if we choose Pt = Q̄+ETPt+1(I+GPt+1)
−1E, which is precisely the alterna-

tive form for the solution we derived in (10). With this choice, our adjoint equations become:[
xt+1

λt+1 − Pt+1xt+1

]
=

[
E +GE−TQ̄−GE−TPt −GE−T

0 Pt+1GE−T + E−T

] [
xt

λt − Ptxt

]
Substituting for Pt and simplifying, we obtain:[

xt+1

λt+1 − Pt+1xt+1

]
=

[
(I +GPt+1)

−1E −GE−T

0 (I + Pt+1G)E−T

] [
xt

λt − Ptxt

]
Now recall from (10) that A+BKt = (I +GPt+1)

−1E, so we have:[
xt+1

λt+1 − Pt+1xt+1

]
=

[
A+BKt −GE−T

0 (A+BKt)
−T

] [
xt

λt − Ptxt

]
From here, we easily see that if λt+1 = Pt+1xt+1, then we must also have λt = Ptxt and this
completes the proof. The equations also simplify to xt+1 = (A+BKt)xt, which are the closed-loop
equations we expected to see.

Infinte-horizon LQR. This formulation using the adjoint equation is particularly useful when
solving the infinite-horizon LQR problem. In the infinite-horizon setting, we have Pt = Pt+1 = P ,
so the transformation of the symplectic matrix preserves eigenvalues, and we have:[

I 0
−P I

] [
E +GE−TQ̄ −GE−T

−E−TQ̄ E−T

]
︸ ︷︷ ︸

M

[
I 0
P I

]
=

[
A+BK −GE−T

0 (A+BK)−T

]
. (14)

This observation is the key to solving the Discrete Algebraic Riccati Equation (DARE): eigenvalues
of the symplectic matrix M are the eigenvalues of the LQR-optimal closed-loop map (stable) and
their conjugate inverses (unstable). Multiply (14) by

[
I 0
P I

]
(. . . )

[
I
0

]
and obtain

M

[
I
P

]
=

[
I
P

]
(A+BK). (15)

The stable eigenvalues of M are the eigenvalues of (A + BK). So if we diagonalize M and collect
all stable eigenvalues in the diagonal matrix Λ, we can write the eigenvalue decomposition

M

[
V1

V2

]
=

[
V1

V2

]
Λ.

Under suitable assumptions, V1 will be invertible. Multiply on the right by V −1
1 and obtain

M

[
I

V2V
−1
1

]
=

[
I

V2V
−1
1

] (
V1ΛV

−1
1

)
.

Note the similarity with (15). It takes some work to prove the details, but it turns out that
P = V2V

−1
1 is the (unique) stabilizing solution to the DARE, and V1ΛV

−1
1 = A + BK is the

LQR-optimal closed-loop map.

7


	The LQR problem
	Solution via dynamic programming
	Solution via completing the square
	Solution via block elimination
	Solution via adjoint equations


