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1 Matrix Norms

For some matrix A ∈ Rm×n, we view A as a mapping A : Rn → Rm, which is the result of matrix
multiplication. We considered control and estimation problems. Here is what we found.

Control problem. We have A : vi 7→ σiui. So when x has uncertainty in a unit ball, then b has
uncertainty in the ellipsoid: δb ∈ {Ax | ∥x∥ ≤ 1} ⊆ Rm.

Estimation problem. We have A : 1
σi
vi 7→ ui. So when b has uncertainty in a unit ball, then x

has uncertainty in the ellipsoid: δx ∈ {x | ∥Ax∥ ≤ 1} ⊆ Rn.
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The matrix norm: The standard matrix norm has several names: “norm”, “induced 2-norm”,
“spectral norm”, “maximum gain”. They all mean the same thing. The standard symbol is ∥A∥2 or
simply ∥A∥. When you see a matrix norm with no other explanation, you should always assume
this is what is meant. If A ∈ Rm×n, the norm of A is defined as

∥A∥ := max
x ̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥.

The second equality is due to the fact that we can scale x so that it has unit norm itself. Note that
∥Ax∥ is the standard (Euclidean) vector norm in Rm and ∥x∥ is the standard norm in Rn. Using
what we derived from the control problem, we see that the largest possible gain is achieved when
x = v1, and it leads to Ax = σ1u1, therefore the norm is just the largest singular value:

∥A∥ = σ1

Applying this matrix norm to a vector actually recovers the standard vector norm, so this definition
is consistent:

∥a∥matrix = max
x ̸=0

∥ax∥
∥x∥

= max
x ̸=0

|x|∥a∥
|x|

= ∥a∥

∥aT∥matrix = max
x ̸=0

∥aTx∥
∥x∥

= max
x ̸=0

|aTx|
∥x∥

= ∥a∥

In the last step, we used the Cauchy–Schwarz inequality: |aTx| = ∥a∥ · ∥x∥ cos θ ≤ ∥a∥∥x∥, and
equality is achieved if we pick x to be aligned with a.

Condition number. The condition number cond(A), also written as κ(A), is defined as

κ(A) :=

(
∥A∥ · ∥A−1∥ if A is invertible
∞ otherwise

Based on the fact that ∥A∥ = σ1 and the singular values of A−1 are 1
σi

, we have ∥A−1∥ = 1
σn

.
Therefore, the condition number is the ratio of largest to smallest singular value: κ(A) = σ1

σn
. Note

that the condition number always satisfies κ(A) ≥ 1. The matrices for which κ(A) = 1 are precisely
multiples of orthogonal matrices, since such matrices have all singular values equal. The simplest
example is A = I, the identity matrix.

Example: relative error. If x has uncertainty δx, we define relative error as ∥δx∥
∥x∥ . Suppose we

want to solve Ax = b. Given the relative error in b, how large can the relative error in x be?

We use the fact that Ax = b and A(x+ δx) = (b+ δb). Calculating:

(relative error in x)

(relative error in b)
=

∥δx∥
∥x∥

∥b∥
∥δb∥

=
∥A−1δb∥
∥δb∥

· ∥Ax∥
∥x∥

≤ ∥A∥ · ∥A−1∥ = κ(A)

So the condition number is an upper bound on the ratio of relative errors. It tells us “how much
worse things can get” when solving a set of linear equations with uncertain b vector.

2



Matlab code. Implementation of the example from the previous lecture.

A = [1, 1; 1, 1.001]

b = [2; 2]

[U, S, V] = svd(A) % S = [2.0005 0; 0 0.0005]

norm(A) % ans = 2.0005

cond(A) % ans = 4.0020e+03

db = 0.001 * U(:, 2) % Value of our perturbation

x = A\b % Value we're supposed to get

xnew = A\(b+db) % Value with perturbation

norm(xnew - x)/norm(x) % Relative error

norm(xnew - x)/norm(x) / (norm(db)/norm(b)) % Error ratio. ans = 2.8291e+03

The ratio of relative errors we obtained isn’t the worst possible (it does not match the condition
number of A). This is because we did not value is not actually the worst case. We picked the
worst-case δb, but we did not use the worst-case δx. Let’s change x to be worst-case:

x = V(:,1)

b = A*x

xnew = A\(b+db)

norm(xnew - x)/norm(x) / (norm(db)/norm(b)) % Error ratio. ans = 4.0020e+03

The best possible combination of δb and δx is:

db = 0.001 * U(:,1)

x = V(:,2)

b = A*x

xnew = A\(b+db)

norm(xnew - x)/norm(x) / (norm(db)/norm(b)) % Error ratio. ans = 2.4988e-04

A dramatic improvement in relative error!

2 Estimation and Control problems

2.1 Uncertainty ellipsoids in estimation

In estimation problem, we have the model Ax = b, and our task is to figure out x based on the
fact that the given b has been perturbed. The assumption is therefore that Ax = b + w, where w
is the perturbation that will make the equation true. We do not know w (we only measure b), but
we assume we know how large w can be. Suppose the perturbation satisfies ∥w∥ ≤ α. The set of
possible x values is

{x | Ax = b+ w, ∥w∥ ≤ α}

Eliminate w using the fact that w = Ax− b, we obtain:

{x | ∥Ax− b∥ ≤ α}
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We assume that b ∈ range(A), because if there had been no perturbation (w = 0), there should be
an exact solution Ax = b. One such solution is x = A†b. Make the change of variables x = A†b+ z,
and the set becomes n

A†b+ z
��� ∥Az∥ ≤ α

o
More rearrangements lead to the set:

A†b+
�
z
��  1

αAz
 ≤ 1

	
This is now an ellipsoid in the standard estimation form shown in Section 1. Therefore, we conclude
that the set of admissible x is:

• an ellipsoid centered at A†b (which is the zero-perturbation solution)

• The axes of the ellipsoid are in the direction of vi (left singular vectors of A)

• The lengths of the axes are α
σi

. So the most sensitive direction is vn.

• When the matrix is close to singular (i.e. σn → 0), the ellipsoid stretches out and becomes
a subspace. Note that the dimensions that stretch out to infinity correspond to the subspace
spanned by V2, i.e. null(A).

If we have two ellipsoids generated from different measurements, they might look like:

E1 = {x | ∥A1x− b1∥ ≤ α}
E2 = {x | ∥A2x− b2∥ ≤ α}

If we take the combined set of measurements and assume that we have the same amount of un-
certainty (ball of radius α), but now this uncertainty must be distributed across all measurements,
then we obtain the ellipsoid E1+2:

E1+2 =

�
x

���� �A1

A2

�
x−

�
b1
b2

� ≤ α

�
Even though we don’t know how the uncertainty will be distributed, it turns out this combined
ellipsoid is contained inside the intersection of the other two:

E1+2 ⊆ E1 ∩ E2
To prove this, let x ∈ E1+2

=⇒
�A1

A2

�
x−

�
b1
b2

�2 ≤ α2

=⇒ ∥A1x− b1∥2 + ∥A2x− b2∥2 ≤ α2

Therefore, each individual term must less than α: ∥A1x− b1∥ ≤ α and ∥A2x− b2∥ ≤ α. Hence, we
have x ∈ E1 and x ∈ E2, and therefore x ∈ E1 ∩ E2, as required. Fig. 1 shows an example of how
these ellipsoids are nested, for randomly generated Ai and bi.

Uncertainty can also be quantified (more crudely) in terms of matrix norms.
�
A1

A2

�† ≤
A†

1

 and


�
A1

A2

�† ≤
A†

2


This follows from the fact that if one ellipsoid is contained inside another, then the maximum diam-
eter of the inner ellipsoid must be larger than the maximum diameter of the outer ellipsoid.
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Figure 1: Estimation ellipsoids. If the same uncertainty is spread out across more mea-
surements (in an unknown way), the uncertainty in estimating x necessarily decreases,
as shown by the fact that the estimation ellipsoid for the combined measurements is
contained inside the intersection of separate ellipsoids for each measurement.

2.2 Uncertainty ellipsoids in control

Let’s return to our example of moving a mass. Our task is to change the position of the block x
from 0 to 1, and change the velocity v from 0 to 0 within T seconds.�

x = 0
v = 0

�
| {z }

t=0

−→
�
x = 1
v = 0

�
| {z }

t=T

Every time we apply force on this block, there exists some perturbation associated with the force.
The position and velocity at time T is described as follow:

�
xT
vT

�
=

�
T − 1 T − 2 · · · 1 0
1 1 · · · 1 1

�
| {z }

AT

0BBB@
26664

f0
f1
...

fT−1

37775+ w

1CCCA , ∥w∥ ≤ α

Assuming our uncertainty in the forces is in a ball ∥w∥ ≤ α as indicated above, the set of achievable
final positions and velocities at time T is

{AT (f + w) | ∥w∥ ≤ α,Af = b}
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