Linear algebra cheat-sheet

Laurent Lessard

University of Wisconsin-Madison

Matrix basics

A matrix is an array of numbers. $A \in \mathbb{R}^{m \times n}$ means that:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right] \quad(m \text { rows and } n \text { columns })
$$

Two matrices can be multiplied if inner dimensions agree:

$$
\underset{(m \times p)}{C}=\underset{(m \times n)(n \times p)}{A} \underset{c^{\prime}}{B} \quad \text { where } \quad c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Transpose: The transpose operator A^{\top} swaps rows and columns. If $A \in \mathbb{R}^{m \times n}$ then $A^{\top} \in \mathbb{R}^{n \times m}$ and $\left(A^{\top}\right)_{i j}=A_{j i}$.

- $\left(A^{\top}\right)^{\top}=A$.
- $(A B)^{\top}=B^{\top} A^{\top}$.

Matrix basics (cont'd)

Vector products. If $x, y \in \mathbb{R}^{n}$ are column vectors,

- The inner product is $x^{\top} y \in \mathbb{R}$ (a.k.a. dot product)
- The outer product is $x y^{\top} \in \mathbb{R}^{n \times n}$.

These are just ordinary matrix multiplications!
Inverse. Let $A \in \mathbb{R}^{n \times n}$ (square). If there exists $B \in \mathbb{R}^{n \times n}$ with $A B=I$ or $B A=I$ (if one holds, then the other holds with the same B) then B is called the inverse of A, denoted $B=A^{-1}$.

Some properties of the matrix inverse:

- A^{-1} is unique if it exists.
- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$.
- $(A B)^{-1}=B^{-1} A^{-1}$.

Vector norms

A norm $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function satisfying the properties:

- $\|x\|=0$ if and only if $x=0$ (definiteness)
- $\|c x\|=|c|\|x\|$ for all $c \in \mathbb{R}$ (homogeneity)
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)

Common examples of norms:

- $\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \quad$ (the 1-norm)
- $\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
(the 2-norm)
- $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
(max-norm)

Properties of the 2-norm (Euclidean norm)

- If you see $\|x\|$, think $\|x\|_{2}$ (it's the default)
- $x^{\top} x=\|x\|^{2}$
- $x^{\top} y \leq\|x\|\|y\| \quad$ (Cauchy-Schwarz inequality)

Linear independence

A set of vectors $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{m}$ is linearly independent if

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=0 \text { if and only if } c_{1}=\cdots=c_{n}=0
$$

If we define the matrix $A=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right] \in \mathbb{R}^{m \times n}$ then the columns of A are linearly independent if

$$
A w=0 \quad \text { if and only if } \quad w=0
$$

If the vectors are not linearly independent, then they are linearly dependent. In this case, at least one of the vectors is redundant (can be expressed as a linear combination of the others). i.e. there exists a k and real numbers c_{i} such that

$$
x_{k}=\sum_{i \neq k} c_{i} x_{i}
$$

The rank of a matrix

$\operatorname{rank}(A)=$ maximum number of linearly independent columns $=$ maximum number of linearly independent rows

If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ then

- $\operatorname{rank}(A) \leq \min (m, n)$
- $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B)) \leq \min (m, n, p)$
- if $\operatorname{rank}(A)=n$ then $\operatorname{rank}(A B)=\operatorname{rank}(B)$
- if $\operatorname{rank}(B)=n$ then $\operatorname{rank}(A B)=\operatorname{rank}(A)$

So multiplying by an invertible matrix does not alter the rank.
General properties of the matrix rank:

- $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)=\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}\left(A A^{\top}\right)$
- $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{rank}(A)=n$.

Linear equations

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, linear equations take the form

$$
A x=b
$$

Where we must solve for $x \in \mathbb{R}^{n}$. Three possibilities:

- No solutions. Example: $x_{1}+x_{2}=1$ and $x_{1}+x_{2}=0$.
- Exactly one solution. Example: $x_{1}=1$ and $x_{2}=0$.
- Infinitely many solutions. Example: $x_{1}+x_{2}=0$.

Two common cases:

- Overdetermined: $m>n$. Typically no solutions. One approach is least-squares; find x to minimize $\|A x-b\|_{2}$.
- Underdetermined: $m<n$. Typically infinitely many solutions. One approach is regularization; find the solution to $A x=b$ such that $\|x\|_{2}$ is as small as possible.

Least squares

When the linear equations $A x=b$ are overdetermined and there is no solution, one approach is to find an x that almost works by minimizing the 2-norm of the residual:

$$
\begin{equation*}
\underset{x}{\operatorname{minimize}}\|A x-b\|_{2} \tag{1}
\end{equation*}
$$

This problem always has a solution (not necessarily unique). \hat{x} minimizes (1) iff \hat{x} satisfies the normal equations:

$$
A^{\top} A \hat{x}=A^{\top} b
$$

The normal equations (and therefore (1)) have a unique solution iff the columns of A are linearly independent. Then,

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

Range and nullspace

Given $A \in \mathbb{R}^{m \times n}$, we have the definitions:
Range: $R(A)=\left\{A x \mid x \in \mathbb{R}^{n}\right\}$. Note: $R(A) \subseteq \mathbb{R}^{m}$
Nullspace: $N(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$. Note: $N(A) \subseteq \mathbb{R}^{n}$
The following statements are equivalent:

- There exists a solution to the equation $A x=b$
- $b \in R(A)$
- $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & b\end{array}\right]\right)$

The following statements are equivalent:

- Solutions to the equation $A x=b$ are unique
- $N(A)=\{0\}$
- $\operatorname{rank}(A)=n \quad$ Remember: $\operatorname{rank}(A)=\operatorname{dim}(R(A))$

Theorem: $\operatorname{rank}(A)+\operatorname{dim}(N(A))=n$

Orthogonal matrices

A matrix $U \in \mathbb{R}^{m \times n}$ is orthogonal if $U^{\top} U=I$. Note that we must have $m \geq n$. Some properties of orthogonal U and V :

- Columns are orthonormal: $u_{i}^{\top} u_{j}=\delta_{i j}$.
- Orthogonal transformations preserve angles \& distances: $(U x)^{\top}(U z)=x^{\top} z$ and $\|U x\|_{2}=\|x\|_{2}$.
- Certain matrix norms are also invariant:

$$
\left\|U A V^{\top}\right\|_{2}=\|A\|_{2} \text { and }\left\|U A V^{\top}\right\|_{F}=\|A\|_{F}
$$

- If U is square, $U^{\top} U=U U^{\top}=I$ and $U^{-1}=U^{\top}$.
- UV is orthogonal.

Every subspace has an orthonormal basis: For any $A \in \mathbb{R}^{m \times n}$, there exists an orthogonal $U \in \mathbb{R}^{m \times r}$ such that $R(A)=R(U)$ and $r=\operatorname{rank}(A)$. One way to find U is using Gram-Schmidt.

Projections

If $P \in \mathbb{R}^{n \times n}$ satisfies $P^{2}=P$, it's called a projection matrix. In general, $P: \mathbb{R}^{n} \rightarrow S$, where $S \subseteq \mathbb{R}^{n}$ is a subspace. If P is a projection matrix, so is $(I-P)$. We can uniquely decompose:

$$
x=u+v \text { where } u \in S, v \in S^{\perp}(u=P x, v=(I-P) x)
$$

Pythagorean theorem: $\|x\|_{2}^{2}=\|u\|_{2}^{2}+\|v\|_{2}^{2}$
If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, then the projection onto $R(A)$ is given by $P=A\left(A^{\top} A\right)^{-1} A^{\top}$.

Least-squares: decompose b using the projection above:

$$
\begin{aligned}
b & =A\left(A^{\top} A\right)^{-1} A^{\top} b+\left(I-A\left(A^{\top} A\right)^{-1} A^{\top}\right) b \\
& =A \hat{x}+(b-A \hat{x})
\end{aligned}
$$

Where $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$ is the LS estimate. Therefore the optimal residual is orthogonal to $A \hat{x}$.

The singular value decomposition

Every $A \in \mathbb{R}^{m \times n}$ can be factored as

$$
\underset{(m \times n)}{A}=\underset{(m \times r)(r \times r)(n \times r)^{\top}}{U_{1}} \Sigma_{1}{\underset{1}{1}}_{V_{1}^{\top}} \quad \text { (economy SVD) }
$$

U_{1} is orthogonal, its columns are the left singular vectors
V_{1} is orthogonal, its columns are the right singular vectors
Σ_{1} is diagonal. $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$ are the singular values
Complete the orthogonal matrices so they become square:

$$
\underset{(m \times n)}{A}=\underset{(m \times m)}{\left[\begin{array}{ll}
U_{1} & U_{1}
\end{array}\right]} \underset{(m \times n)}{\Sigma_{1}} \begin{gathered}
0 \\
0
\end{gathered} 0 .\left[\begin{array}{l}
V_{1}^{\top} \\
V_{2}^{\top}
\end{array}\right]=U \Sigma V^{\top} \quad \text { (full SVD) }
$$

The singular values σ_{i} are an intrinsic property of A. (the SVD is not unique, but every SVD of A has the same Σ_{1})

Properties of the SVD

Singular vectors u_{i}, v_{i} and singular values σ_{i} satisfy

$$
A v_{i}=\sigma_{i} u_{i} \quad \text { and } \quad A^{\top} u_{i}=\sigma_{i} v_{i}
$$

Suppose $A=U \Sigma V^{\top}$ (full SVD) as in previous slide.

- rank: $\operatorname{rank}(A)=r$
- transpose: $A^{\top}=V \Sigma U^{\top}$
- pseudoinverse: $A^{\dagger}=V_{1} \Sigma_{1}^{-1} U_{1}^{\top}$

Fundamental subspaces:

- $R\left(U_{1}\right)=R(A)$ and $R\left(U_{2}\right)=R(A)^{\perp} \quad$ (range of $\left.A\right)$
- $R\left(V_{1}\right)=N(A)^{\perp}$ and $R\left(V_{2}\right)=N(A) \quad$ (nullspace of A)

Matrix norms:

- $\|A\|_{2}=\sigma_{1} \quad$ and $\quad\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$

