20. Logic constraints, integer variables

- If-then constraints
- Generalized assignment problems
- Logic constraints
- Modeling a restricted set of values
- Sudoku!
If-then constraints

A single simple trick (with suitable adjustments) can help us model a great variety of if-then constraints.

The trick

- We’d like to model the constraint: if $z = 0$ then $a^T x \leq b$.
- Let M be an upper bound for $a^T x - b$.
- Write: $a^T x - b \leq M z$
- If $z = 0$, then $a^T x - b \leq 0$ as required. Otherwise, we get $a^T x - b \leq M$, which is always true.
If-then constraints

Slight change: if \(z = 1 \) then \(a^T x \leq b \)

- Again, let \(M \) be an upper bound for \(a^T x - b \)
- Write: \(a^T x - b \leq M(1 - z) \)

Reversed inequality: if \(z = 0 \) then \(a^T x \geq b \)

- Write constraint as \(-a^T x + b \leq 0 \)
- Let \(m \) be an upper bound on \(-a^T x + b \)
- Write: \(-a^T x + b \leq mz. \) Same as: \(a^T x - b \geq -mz \)
- Note: \(-m \) is a lower bound on \(a^T x - b. \)
If-then constraints

The converse: if \(a^T x \leq b \) then \(z = 1 \)

- Equivalent to: if \(z = 0 \) then \(a^T x > b \) (contrapositive).
- The strict inequality is not really enforceable. Instead, write: if \(z = 0 \) then \(a^T x \geq b + \varepsilon \) where \(\varepsilon \) is small.
- Let \(m \) be a lower bound for \(a^T x - b \) and we obtain the equivalent constraint: \(a^T x - b \geq mz + \varepsilon (1 - z) \)
- If \(z = 0 \), we get \(a^T x \geq b + \varepsilon \), as required. Otherwise, we get: \(a^T x - b \geq m \), which is always true.

- **Note:** If \(a, x, b \) are integer-valued, we may set \(\varepsilon = 1 \).
If-then constraints (summary)

<table>
<thead>
<tr>
<th>Logic statement</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>if $z = 0$ then $a^T x \leq b$</td>
<td>$a^T x - b \leq Mz$</td>
</tr>
<tr>
<td>if $z = 0$ then $a^T x \geq b$</td>
<td>$a^T x - b \geq mz$</td>
</tr>
<tr>
<td>if $z = 1$ then $a^T x \leq b$</td>
<td>$a^T x - b \leq M(1 - z)$</td>
</tr>
<tr>
<td>if $z = 1$ then $a^T x \geq b$</td>
<td>$a^T x - b \geq m(1 - z)$</td>
</tr>
<tr>
<td>if $a^T x \leq b$ then $z = 1$</td>
<td>$a^T x - b \geq mz + \varepsilon(1 - z)$</td>
</tr>
<tr>
<td>if $a^T x \geq b$ then $z = 1$</td>
<td>$a^T x - b \leq Mz - \varepsilon(1 - z)$</td>
</tr>
<tr>
<td>if $a^T x \leq b$ then $z = 0$</td>
<td>$a^T x - b \geq m(1 - z) + \varepsilon z$</td>
</tr>
<tr>
<td>if $a^T x \geq b$ then $z = 0$</td>
<td>$a^T x - b \leq M(1 - z) - \varepsilon z$</td>
</tr>
</tbody>
</table>

Where M and m are upper and lower bounds on $a^T x - b$.

20-5
Return to fixed costs and lower bounds

- Modeling a fixed cost: if $x > 0$ then $z = 1$.
 - Use the contrapositive: if $z = 0$ then $x \leq 0$.
 - Apply the 1st rule on Slide 20-5.

- Modeling a lower bound: either $x = 0$ or $x \geq m$.
 - Equivalent to: if $x > 0$ then $x \geq m$.
 - Equivalent to the following two logical constraints:
 - if $x > 0$ then $z = 1$, and if $z = 1$ then $x \geq m$.
 - The first one is a fixed cost (see above)
 - The second one is the 4th rule on Slide 20-5.
Generalized assignment problems (GAP)

- Set of machines: $\mathcal{M} = \{1, 2, \ldots, m\}$ that can perform jobs. (Think of these as the facilities in the facility problem)

- Machine i has a fixed cost of h_i if we use it at all.

- Machine i has a capacity of b_i units of work (this is new!)

- Set of jobs: $\mathcal{N} = \{1, 2, \ldots, n\}$ that must be performed. (Think of these as the customers in the facility problem)

- Job j requires a_{ij} units of work to be completed if it is completed on machine i.

- Job j will cost c_{ij} if it is completed on machine i.

- Each job must be assigned to exactly one machine.
GAP model

minimize \(x, z \sum_{i \in M} h_i z_i + \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} \) (fixed cost + assignment cost)

subject to:

\[\sum_{i \in M} x_{ij} = 1 \quad \forall j \in N \] (one machine per job)

\[\sum_{j \in N} a_{ij} x_{ij} \leq b_i \quad \forall i \in M \] (work budget)

\[x_{ij} \leq z_i \quad \forall i \in M, j \in N \] (if \(x_{ij} > 0 \) then \(z_i = 1 \))

\[x_{ij}, z_i \in \{0, 1\} \quad \forall i \in M, j \in N \] (all binary!)

- \(z_i = 1 \) if machine \(i \) is used, and
- \(x_{ij} = 1 \) if job \(j \) is performed by machine \(i \).
- **Note:** many choices possible for \(M_i \) and aggregations.
New constraints

Let’s make GAP more interesting...

1. If you use k or more machines, you must pay a penalty of λ.
2. If you operate either machine 1 or machine 2, you may not operate both machines 3 and 4 at the same time.
3. If you operate both machines 1 and 2, then machine 3 must be operated at 40% of its capacity.
4. Each job $j \in \mathcal{N}$ has a duration d_j. Minimize the time we have to wait before all jobs are completed. (this is called the makespan).
If you use k or more machines, you must pay a penalty of λ.

- Using k or more machines is equivalent to saying that

 \[z_1 + z_2 + \cdots + z_m \geq k \]

- Let $\delta_1 = 1$ if we incur the penalty. We now have the if-then constraint: if $\sum_{i \in \mathcal{M}} z_i \geq k$ then $\delta_1 = 1$.

- Use the 6th rule on Slide 20-5 and obtain:

 \[\sum_{i \in \mathcal{M}} z_i \leq m\delta_1 + (k - 1)(1 - \delta_1) \]

- add $\lambda \delta_1$ to the cost function.
If you operate either machine 1 or machine 2, you may not operate both machines 3 and 4 at the same time.

- Operating machine 1 or machine 2: \(z_1 + z_2 \geq 1 \).
- Not operating machines 3 and 4: \(z_3 + z_4 \leq 1 \).
- We must model \(z_1 + z_2 \geq 1 \implies z_3 + z_4 \leq 1 \)
 - Same trick as before: model this in two steps:
 \(z_1 + z_2 \geq 1 \implies \delta_2 = 1 \) and \(\delta_2 = 1 \implies z_3 + z_4 \leq 1 \)
 - First follows from 6\(^{th}\) rule on Slide 20-5
 - Second follows from 3\(^{rd}\) rule on Slide 20-5
- Result: \(z_1 + z_2 \leq 2\delta_2 \) and \(z_3 + z_4 + \delta_2 \leq 2 \).
GAP 2 (cont’d)

If you operate either machine 1 or machine 2, you may not operate both machines 3 and 4 at the same time.

We didn’t do anything to ensure that when $z_i = 1$, the machines are actually operating! (we didn’t explicitly disallow paying the fixed cost without using the machine).

- To force the converse as well, include the constraint:

 if $z_i = 1$ then $\sum_{j \in \mathcal{N}} x_{ij} \geq 1$

- Use the 4th rule on Slide 20-5.

- Result: $\sum_{j \in \mathcal{N}} x_{ij} \geq z_i$ (for $i = 1, 2, 3, 4$)
If you operate both machines 1 and 2, then machine 3 must be operated at 40% of its capacity.

- Operate both machines 1 and 2: \(z_1 + z_2 \geq 2 \)

- Capacity of machine 3 drops: \(b_3 \) becomes 0.4\(b_3 \).

- Two parts to the implementation:
 - \(z_1 + z_2 \geq 2 \quad \implies \quad \delta_3 = 1. \) (6th rule on Slide 20-5)
 - \(\delta_3 = 1 \quad \implies \quad \sum_{j \in \mathcal{N}} a_{3j} x_{3j} \leq 0.4 b_3. \) (3rd rule on Slide 20-5)

- Equivalently, just replace \(b_3 \) by: \(b_3(1 - \delta_3) + 0.4 b_3 \delta_3. \)
Each job $j \in \mathcal{N}$ has a duration d_j. Minimize the time we have to wait before all jobs are completed. (the makespan)

- Machine i completes all its jobs in time: $\sum_{j \in \mathcal{N}} x_{ij} d_j$
- Minimax problem (no integer variables needed!)
- Let t be the makespan; $t = \max_{i \in \mathcal{M}} \left(\sum_{j \in \mathcal{N}} x_{ij} d_j \right)$
- Model: minimize t subject to:
 \[t \geq \sum_{j \in \mathcal{N}} x_{ij} d_j \quad \text{for all } i \in \mathcal{M} \]
Logic constraints

- A **proposition** is a statement that evaluates to true or false. One example we’ve seen: a linear constraint $a^T x \leq b$.

- We’ll use binary variables δ_i to represent propositions P_i:
 $$\delta_i = \begin{cases} 1 & \text{if proposition } P_i \text{ is true} \\ 0 & \text{if proposition } P_i \text{ is false} \end{cases}$$

 The term for this is that δ_i is an **indicator variable**.

How can we turn logical statements about the P_i’s into algebraic statements involving the δ_i’s?

Some standard notation:

- \lor means “or”
- \land means “and”
- \neg means “not”
- \implies means “implies”
- \iff means “if and only if”
- \oplus means “exclusive or”
Boolean algebra

Basic definitions:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \oplus Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Useful relationships:

- $\neg(P_1 \land \cdots \land P_k) = \neg P_1 \lor \cdots \lor \neg P_k$
- $\neg(P_1 \lor \cdots \lor P_k) = \neg P_1 \land \cdots \land \neg P_k$
- $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$
- $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$
- $P \oplus Q = (P \land \neg Q) \lor (\neg P \land Q)$
Logic to algebra

<table>
<thead>
<tr>
<th>Statement</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬(P_1)</td>
<td>(\delta_1 = 0)</td>
</tr>
<tr>
<td>(P_1 \lor P_2)</td>
<td>(\delta_1 + \delta_2 \geq 1)</td>
</tr>
<tr>
<td>(P_1 \oplus P_2)</td>
<td>(\delta_1 + \delta_2 = 1)</td>
</tr>
<tr>
<td>(P_1 \land P_2)</td>
<td>(\delta_1 = 1, \delta_2 = 1)</td>
</tr>
<tr>
<td>¬((P_1 \lor P_2))</td>
<td>(\delta_1 = 0, \delta_2 = 0)</td>
</tr>
<tr>
<td>(P_1 \implies P_2)</td>
<td>(\delta_1 \leq \delta_2) (equivalent to: (\neg P_1 \lor P_2))</td>
</tr>
<tr>
<td>(P_1 \implies (\neg P_2))</td>
<td>(\delta_1 + \delta_2 \leq 1) (equivalent to: (\neg(P_1 \land P_2)))</td>
</tr>
<tr>
<td>(P_1 \iff P_2)</td>
<td>(\delta_1 = \delta_2)</td>
</tr>
<tr>
<td>(P_1 \implies (P_2 \land P_3))</td>
<td>(\delta_1 \leq \delta_2, \delta_1 \leq \delta_3)</td>
</tr>
<tr>
<td>(P_1 \implies (P_2 \lor P_3))</td>
<td>(\delta_1 \leq \delta_2 + \delta_3)</td>
</tr>
<tr>
<td>((P_1 \land P_2) \implies P_3)</td>
<td>(\delta_1 + \delta_2 \leq 1 + \delta_3)</td>
</tr>
<tr>
<td>((P_1 \lor P_2) \implies P_3)</td>
<td>(\delta_1 \leq \delta_3, \delta_2 \leq \delta_3)</td>
</tr>
<tr>
<td>(P_1 \land (P_2 \lor P_3))</td>
<td>(\delta_1 = 1, \delta_2 + \delta_3 \geq 1)</td>
</tr>
<tr>
<td>(P_1 \lor (P_2 \land P_3))</td>
<td>(\delta_1 + \delta_2 \geq 1, \delta_1 + \delta_3 \geq 1)</td>
</tr>
</tbody>
</table>
More logic to algebra

<table>
<thead>
<tr>
<th>Statement</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1 \lor P_2 \lor \cdots \lor P_k)</td>
<td>(\sum_{i=1}^{k} \delta_i \geq 1)</td>
</tr>
<tr>
<td>((P_1 \land \cdots \land P_k) \implies (P_{k+1} \lor \cdots \lor P_n))</td>
<td>(\sum_{i=1}^{k} (1 - \delta_i) + \sum_{i=k+1}^{n} \delta_i \geq 1)</td>
</tr>
<tr>
<td>at least (k) out of (n) are true</td>
<td>(\sum_{i=1}^{n} \delta_i \geq k)</td>
</tr>
<tr>
<td>exactly (k) out of (n) are true</td>
<td>(\sum_{i=1}^{n} \delta_i = k)</td>
</tr>
<tr>
<td>at most (k) out of (n) are true</td>
<td>(\sum_{i=1}^{n} \delta_i \leq k)</td>
</tr>
<tr>
<td>(P_n \iff (P_1 \lor \cdots \lor P_k))</td>
<td>(\sum_{i=1}^{k} \delta_i \geq \delta_n, \delta_n \geq \delta_j, j = 1, \ldots, k)</td>
</tr>
<tr>
<td>(P_n \iff (P_1 \land \cdots \land P_k))</td>
<td>(\delta_n + k \geq 1 + \sum_{i=1}^{k} \delta_i, \delta_j \geq \delta_n, j = 1, \ldots, k)</td>
</tr>
</tbody>
</table>
Modeling a restricted set of values

- We may want variable x to only take on values in the set \{a_1, \ldots, a_m\}.

- We introduce binary variables y_1, \ldots, y_m and the constraints

$$x = \sum_{j=1}^{m} a_j y_j, \quad \sum_{j=1}^{m} y_j = 1, \quad y_j \in \{0, 1\}$$

- y_i serves to select which a_i will be selected.

- The set of variables \{y_1, y_2, \ldots, y_m\} is called a **special ordered set** (SOS) of variables.
Example: building a warehouse

- Suppose we are modeling a facility location problem in which we must decide on the size of a warehouse to build.
- The choices of sizes and associated cost are shown below:

<table>
<thead>
<tr>
<th>Size</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>320</td>
</tr>
<tr>
<td>60</td>
<td>450</td>
</tr>
<tr>
<td>80</td>
<td>600</td>
</tr>
</tbody>
</table>

Warehouse sizes and costs
Example: building a warehouse

- Using binary decision variables x_1, x_2, \ldots, x_5, we can model the cost of building the warehouse as
 \[
 \text{cost} = 100x_1 + 180x_2 + 320x_3 + 450x_4 + 600x_5.
 \]

- The warehouse will have size
 \[
 \text{size} = 10x_1 + 20x_2 + 40x_3 + 60x_4 + 80x_5,
 \]

- and we have the SOS constraint
 \[
 x_1 + x_2 + x_3 + x_4 + x_5 = 1.
 \]
What about integers?

- What if x is an integer, i.e. $x \in \{1, 2, \ldots, 10\}$
- First option: use 10 separate variables:

 $$x = \sum_{k=1}^{10} k y_k, \quad \sum_{k=1}^{10} y_k = 1, \quad y_k \in \{0, 1\}$$

- Another option: use 4 binary variables (less symmetry):

 $$x = y_1 + 2y_2 + 4y_3 + 8y_4, \quad 1 \leq x \leq 10, \quad y_k \in \{0, 1\}$$

Performance is solver-dependent. If the solver allows integer constraints directly, that’s often the right choice.
Example: Sudoku

- fill grid with numbers \(\{1, 2, \ldots, 9\} \)
- each row and each column contains distinct numbers
- each \(3 \times 3 \) cluster contains distinct numbers
Example: Sudoku

- Decision variables: $X \in \{0, 1\}^{9 \times 9 \times 9}$ (729 binary variables)

 $X_{ijk} = \begin{cases}
 1 & \text{if } (i, j) \text{ entry is a } k \\
 0 & \text{otherwise}
\end{cases}$

 Can fill in known entries right away.

- Basic constraints: (324 in total)
 - $\sum_{k=1}^{9} X_{ijk} = 1 \quad \forall i, j$ (SOS constraint)
 - $\sum_{i=1}^{9} X_{ijk} = 1 \quad \forall j, k$ (column j contains exactly one k)
 - $\sum_{j=1}^{9} X_{ijk} = 1 \quad \forall i, k$ (row i contains exactly one k)
 - $\sum_{(i,j) \in C} X_{ijk} = 1 \quad \forall C, k$ (cluster C contains exactly one k)

- Much trickier to model using other integer representations!

- Julia code: Sudoku.ipynb