15. Duality

- Upper and lower bounds
- General duality
- Constraint qualifications
- Counterexample
- Complementary slackness
- Examples
- Sensitivity analysis

Upper bounds

Optimization problem (not necessarily convex!):

```
\begin{array}{ll} \underset{x \in D}{\mathsf{minimize}} & f_0(x) \\ \\ \mathsf{subject to:} & f_i(x) \leq 0 \quad \mathsf{for } i = 1, \dots, m \\ \\ & h_j(x) = 0 \quad \mathsf{for } j = 1, \dots, r \end{array}
```

- D is the domain of all functions involved.
- Suppose the optimal value is p^* .
- **Upper bounds:** if $x \in D$ satisfies $f_i(x) \le 0$ and $h_j(x) = 0$ for all i and j, then: $p^* \le f_0(x)$.
- Any feasible x yields an upper bound for p^* .

Lower bounds

Optimization problem (not necessarily convex!):

$$\begin{array}{ll} \underset{x \in D}{\mathsf{minimize}} & f_0(x) \\ \mathsf{subject to:} & f_i(x) \leq 0 \quad \mathsf{for } i = 1, \dots, m \\ & h_j(x) = 0 \quad \mathsf{for } j = 1, \dots, r \end{array}$$

- As with LPs, use the constraints to find lower bounds
- For any $\lambda_i \geq 0$ and $\nu_j \in \mathbb{R}$, if $x \in D$ is feasible, then

$$f_0(x) \ge f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x)$$

Lower bounds

$$f_0(x) \geq \underbrace{f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x)}_{\mathsf{Lagrangian } L(x, \lambda, \nu)}$$

This is a lower bound on f_0 , but we want a lower bound on p^* . Minimize right side over $x \in D$ and left side over feasible x.

$$p^* \ge \left\{ \inf_{x \in D} L(x, \lambda, \nu) \right\} = g(\lambda, \nu)$$

This inequality holds whenever $\lambda \geq 0$.

Lower bounds

$$L(x,\lambda,\nu):=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{j=1}^r\nu_jh_j(x)$$

Whenever $\lambda \geq 0$, we have:

$$g(\lambda,\nu) := \left\{ \inf_{x \in D} L(x,\lambda,\nu) \right\} \leq p^*$$

Useful fact: $g(\lambda, \nu)$ is a **concave** function. This is true even if the original optimization problem is not convex! (because g is a pointwise minimum of affine functions)

General duality

Primal problem (P)

minimize $f_0(x)$ subject to: $f_i(x) \le 0 \quad \forall i$ $h_i(x) = 0 \quad \forall j$

Dual problem (D)

$$\begin{array}{ll} \underset{\lambda,\nu}{\mathsf{maximize}} & g(\lambda,\nu) \\ \mathsf{subject to:} & \lambda \geq 0 \end{array}$$

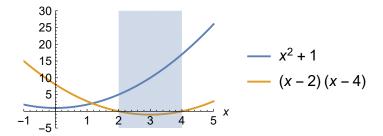
If x and λ are feasible points of (P) and (D) respectively:

$$g(\lambda, \nu) \leq d^* \leq p^* \leq f_0(x)$$

This is called the Lagrange dual. Bad news: strong duality $(p^* = d^*)$ does **not** always hold!

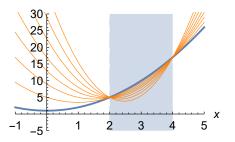
minimize
$$x^2 + 1$$

subject to: $(x-2)(x-4) \le 0$



• optimum occurs at x = 2, has value $p^* = 5$

Lagrangian:
$$L(x, \lambda) = x^2 + 1 + \lambda(x - 2)(x - 4)$$



- Plot for different values of $\lambda > 0$
- $g(\lambda) = \inf_{x} L(x, \lambda)$ should be a lower bound on $p^* = 5$ for all $\lambda \ge 0$.

Lagrangian:
$$L(x, \lambda) = x^2 + 1 + \lambda(x - 2)(x - 4)$$

• Minimize the Lagrangian:

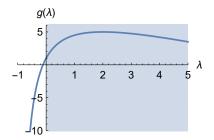
$$g(\lambda) = \inf_{x} L(x, \lambda)$$

= $\inf_{x} (\lambda + 1)x^{2} - 6\lambda x + (8\lambda + 1)$

If $\lambda \leq -1$, it is unbounded. If $\lambda > -1$, the minimum occurs when $2(\lambda + 1)x - 6\lambda = 0$, so $\hat{x} = \frac{3\lambda}{\lambda + 1}$.

$$g(\lambda) = egin{cases} -9\lambda^2/(1+\lambda) + 1 + 8\lambda & \lambda > -1 \ -\infty & \lambda \leq -1 \end{cases}$$

$$\begin{array}{ll} \displaystyle \mathop{\mathsf{maximize}}_{\lambda} & -9\lambda^2/(1+\lambda) + 1 + 8\lambda \\ \\ \mathsf{subject to:} & \lambda \geq 0 \end{array}$$



- optimum occurs at $\lambda = 2$, has value $d^* = 5$
- same optimal value as primal problem! (strong duality)

Constraint qualifications

- weak duality $(d^* \le p^*)$ always holds. Even when the optimization problem is not convex.
- strong duality $(d^* = p^*)$ often holds for convex problems (but not always).

A **constraint qualification** is a condition that guarantees strong duality. An example we've already seen:

If the optimization problem is an LP, strong duality holds

Slater's constraint qualification

```
\begin{array}{ll} \underset{x \in D}{\text{minimize}} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0 \quad \text{for } i=1,\ldots,m \\ & h_j(x) = 0 \quad \text{for } j=1,\ldots,r \end{array}
```

Slater's constraint qualification:

If the optimization problem is convex and strictly feasible, then strong duality holds.

- convexity requires: D and f_i are convex and h_j are affine.
- strict feasibility means there exists some \tilde{x} in the interior of D such that $f_i(\tilde{x}) < 0$ for $i = 1, \dots, m$.

Slater's constraint qualification

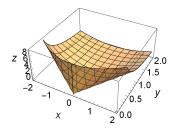
If the optimization problem is convex and strictly feasible, then strong duality holds.

- Good news: Slater's constraint qualification is rather weak.
 i.e. it is usually satisfied by convex problems.
- Can be relaxed so that strict feasibility is not required for the linear constraints.

Counterexample (Boyd)

minimize e^{-x} subject to: $x^2/y \le 0$

- The function x^2/y is convex for y > 0 (see plot)
- The objective e^{-x} is convex
- Feasible set: $\{(0, y) \mid y > 0\}$
- Solution is trivial $(p^* = 1)$



Counterexample (Boyd)

- Lagrangian: $L(x, y, \lambda) = e^{-x} + \lambda x^2/y$
- Dual function: $g(\lambda) = \inf_{x,y>0} (e^{-x} + \lambda x^2/y) = 0$.
- The dual problem is:

$$\max_{\lambda \geq 0} \mathsf{maximize} \quad 0$$

So we have $d^* = 0 < 1 = p^*$.

• Slater's constraint qualification is **not** satisfied!

About Slater's constraint qualification

```
Slater's condition is only sufficient. (Slater) \Longrightarrow (strong duality)
```

- There exist problems where Slater's condition fails, yet strong duality holds.
- There exist nonconvex problems with strong duality.

Complementary slackness

Assume strong duality holds. If x^* is primal optimal and (λ^*, ν^*) is dual optimal, then we have:

$$g(\lambda^{\star}, \nu^{\star}) = d^{\star} = p^{\star} = f_0(x^{\star})$$

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^r \nu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^r \nu_j^* h_j(x^*)$$

$$\leq f_0(x^*)$$

The last inequality holds because x^* is primal feasible. We conclude that the inequalities must all be equalities.

Complementary slackness

• We concluded that:

$$f_0(x^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^r \nu_j^* h_j(x^*)$$

But $f_i(x^*) \leq 0$ and $h_j(x^*) = 0$. Therefore:

$$\lambda_i^* f_i(x^*) = 0$$
 for $i = 1, \dots, m$

 This property is called complementary slackness. We've seen it before for linear programs.

$$\lambda_i^{\star} > 0 \implies f_i(x^{\star}) = 0$$
 and $f_i(x^{\star}) < 0 \implies \lambda_i^{\star} = 0$

$$\begin{array}{ll}
\text{minimize} & c^{\mathsf{T}}x\\
\text{subject to:} & Ax \ge b
\end{array}$$

- Lagrangian: $L(x, \lambda) = c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(b Ax)$
- Dual function: $g(\lambda) = \min_{x \ge 0} (c A^T \lambda)^T x + \lambda^T b$

$$g(\lambda) = \begin{cases} \lambda^\mathsf{T} b & \text{if } A^\mathsf{T} \lambda \leq c \\ -\infty & \text{otherwise} \end{cases}$$

$$\begin{array}{ll}
\text{minimize} & c^{\mathsf{T}}x\\ \\
\text{subject to:} & Ax \ge b
\end{array}$$

Dual is:

 This is the same result that we found when we were studying duality for linear programs.

What if we treat $x \ge 0$ as a constraint instead? $(D = \mathbb{R}^n)$.

minimize
$$c^{\mathsf{T}}x$$

subject to: $Ax \ge b$
 $x \ge 0$

- Lagrangian: $L(x, \lambda, \mu) = c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(b Ax) \mu^{\mathsf{T}}x$
- Dual function: $g(\lambda, \mu) = \min_{x} (c A^{\mathsf{T}}\lambda \mu)^{\mathsf{T}}x + \lambda^{\mathsf{T}}b$

$$g(\lambda) = egin{cases} \lambda^\mathsf{T} b & ext{if } A^\mathsf{T} \lambda + \mu = c \\ -\infty & ext{otherwise} \end{cases}$$

What if we treat $x \ge 0$ as a constraint instead? $(D = \mathbb{R}^n)$.

minimize
$$c^{\mathsf{T}}x$$

subject to: $Ax \ge b$
 $x \ge 0$

Dual is:

$$\begin{array}{ll} \underset{\lambda \geq 0, \, \mu \geq 0}{\text{maximize}} & \lambda^\mathsf{T} b \\ \text{subject to:} & A^\mathsf{T} \lambda + \mu = c \end{array}$$

• Solution is the same, μ acts as the slack variable.

Dual of a convex QP

Suppose $Q \succ 0$. Let's find the dual of the QP:

minimize
$$\frac{1}{2}x^{T}Qx$$

subject to: $Ax \ge b$

- Lagrangian: $L(x, \lambda) = \frac{1}{2}x^{\mathsf{T}}Qx + \lambda^{\mathsf{T}}(b Ax)$
- Dual function: $g(\lambda) = \min_{x} \left(\frac{1}{2} x^{\mathsf{T}} Q x + \lambda^{\mathsf{T}} (b A x) \right)$ Minimum occurs at: $\hat{x} = Q^{-1} A^{\mathsf{T}} \lambda$

$$g(\lambda) = -\frac{1}{2}\lambda^{\mathsf{T}}AQ^{-1}A^{\mathsf{T}}\lambda + \lambda^{\mathsf{T}}b$$

Dual of a convex QP

Suppose $Q \succ 0$. Let's find the dual of the QP:

minimize
$$\frac{1}{2}x^{T}Qx$$

subject to: $Ax \ge b$

Dual is also a QP:

It's still easy to solve (maximizing a concave function)

Sensitivity analysis

$$\min_{x \in D} f_0(x)
s.t. $f_i(x) \leq \mathbf{u}_i \forall i
h_j(x) = \mathbf{v}_j \forall j$$$

$$\max_{\substack{\lambda,\nu\\ \text{s.t.}}} g(\lambda,\nu) - \lambda^{\mathsf{T}} \mathbf{u} - \nu^{\mathsf{T}} \mathbf{v}$$
s.t. $\lambda \ge 0$

- As with LPs, dual variables quantify the sensitivity of the optimal cost to changes in each of the constraints.
- A change in u_i causes a bigger change in p^* if λ_i^* is larger.
- A change in v_j causes a bigger change in p^* if v_j^* is larger.
- If $p^*(u, v)$ is differentiable, then:

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}$$
 and $\nu_j^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_j}$