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Upper bounds

Optimization problem (not necessarily convex!):

minimize fo(x)

subject to: fi(x) <0 fori=1,...,m
hi(x)=0 forj=1,...,r

D is the domain of all functions involved.

Suppose the optimal value is p*.

Upper bounds: if x € D satisfies f;(x) < 0 and h;(x) =0
for all i and j, then: p* < fo(x).

Any feasible x yields an upper bound for p*.



Lower bounds

Optimization problem (not necessarily convex!):

minimize fo(x)

subject to:  fi(x) <0 fori=1,...,m
hi(x)=0 forj=1,...,r

e As with LPs, use the constraints to find lower bounds

e Forany \; > 0and v; € R, if x € D is feasible, then

fo(x) > fo(x +Z)\f )+ > vihi(x)
j=1



Lower bounds

m

B(x) = f(x) + D Aifi(x) + D vihy(x)

i=1

(. s

Lagrangian L(x, A\, v)

This is a lower bound on f;, but we want a lower bound on p*.
Minimize right side over x € D and left side over feasible x.

pr> {Xlng L(X,/\,V)} =g(\v)

This inequality holds whenever A > 0.



Lower bounds

L\ v) = h(x) + D Nifi(x) + Y vihi(x)
i=1 j=1
Whenever A > 0, we have:
=< < p*
g0 = { it LA} <

Useful fact: g(\,v) is a concave function. This is true even
if the original optimization problem is not convex!
(because g is a pointwise minimum of affine functions)



General duality

Primal problem (P) Dual problem (D)
mininBize fo(x) ma>§\imize g\, v)
S N
subject to: fi(x) <0 Vi subject to: A >0
hi(x) =0 Vj

If x and A are feasible points of (P) and (D) respectively:

g\ v) < d* < p* < f(x)

This is called the Lagrange dual. Bad news: strong duality
(p* = d*) does not always hold!



Example (Srikant)
minimize x>+ 1

subject to: (x —2)(x —4) <0

15, _X2+1
10¢ (x-2)(x-4)

e optimum occurs at x = 2, has value p* =5



Example (Srikant)

Lagrangian: L(x,\) = x>+ 1+ A\(x — 2)(x — 4)

30¢
25¢

20 ¢ /
15}

104 /

5

e Plot for different values of A >0

e g(A\) = inf, L(x, A) should be a lower bound on
p* =5 for all A > 0.



Example (Srikant)
Lagrangian: L(x,\) = x?>+ 1+ \(x —2)(x — 4)

e Minimize the Lagrangian:
g(\) =inf L(x,\)
=inf (A +1)x* — 6 x + (8A + 1)

If A < —1, it is unbounded. If A > —1, the minimum

occurs when 2(A + 1)x —6A =0, so X = /\3—J;\1

—ON?/(14+AN)+14+8)2 A>—1
gy ={ /Y
—00 A< -1



Example (Srikant)

maximize  — OA2/(14+A)+1+8)\

subject to: A >0

o)
5/\
e
-1 1 2 3 4 5
5_
10"

e optimum occurs at A = 2, has value d* =
e same optimal value as primal problem! (strong duality)
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Constraint qualifications

e weak duality (d* < p*) always holds. Even when the
optimization problem is not convex.

e strong duality (d* = p*) often holds for convex problems
(but not always).

A constraint qualification is a condition that guarantees
strong duality. An example we've already seen:

e If the optimization problem is an LP, strong duality holds
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Slater’s constraint qualification

minimize fo(x)

subject to: fi(x) <0 fori=1,...,m
hi(x)=0 forj=1,...,r

Slater’s constraint qualification:

If the optimization problem is convex and strictly
feasible, then strong duality holds.

e convexity requires: D and f; are convex and h; are affine.

e strict feasibility means there exists some X in the interior of
D such that (%) <0 fori=1,...,m.
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Slater’s constraint qualification

If the optimization problem is convex and strictly
feasible, then strong duality holds.

e Good news: Slater’s constraint qualification is rather weak.
i.e. it is usually satisfied by convex problems.

e Can be relaxed so that strict feasibility is not required for
the linear constraints.
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Counterexample (Boyd)

minimize e *
x€R, y>0

subject to:  x?/y <0

The function x?/y is convex
for y > 0 (see plot)

The objective e is convex

Feasible set: {(0,y) | y > 0}

Solution is trivial (p* = 1)
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Counterexample (Boyd)

minimize e *
x€R, y>0

subject to:  x?/y <0

Lagrangian: L(x,y,)\) = e + \x?/y

Dual function: g(\) = inf, ,~o(e ™ + A\x?/y) = 0.

The dual problem is:

maximize 0
A>0

So we have d* =0 < 1 = p~.

Slater's constraint qualification is not satisfied!
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About Slater’s constraint qualification

Slater's condition is only sufficient.
(Slater) = (strong duality)

e There exist problems where Slater’s condition fails,
yet strong duality holds.

e There exist nonconvex problems with strong duality.
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Complementary slackness

Assume strong duality holds. If x* is primal optimal and
(X*, v*) is dual optimal, then we have:

f(x*) = g(\*, ") Z;ng< ZA* DY *hj(X))
< fo(x +Z)\* )+Zyjhj(x

< fo(x¥)

The last inequality holds because x* is primal feasible. We
conclude that the inequalities must all be equalities.
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Complementary slackness

e We concluded that:
() = f(x*) + Y A(x) + Y vih(x)
i=1 j=1

But fi(x*) < 0 and h;j(x*) = 0. Therefore:

Afi(x*)=0 fori=1,....m

e This property is called complementary slackness. We've
seen it before for linear programs.

A >0 = fi(x*)=0 and fi(x)<0 = A7 =0
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Dual of an LP

e Lagrangian: L(x,\) = c'x + AT(b— Ax)
e Dual function: g()\) = min (c—ATA)Tx+ \Th
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Dual of an LP

minimize c¢'x
x>0

subject to: Ax > b

e Dual is:
- - T
maximize \' b
A>0

subject to: ATA < ¢

e This is the same result that we found when we were
studying duality for linear programs.
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Dual of an LP

What if we treat x > 0 as a constraint instead? (D = R").

minimize c¢'x
X

subject to: Ax > b
x>0

e Lagrangian: L(x, A\, 1) = c"x + AT(b— Ax) — u"x
e Dual function: g(\, ) = min(c — AT\ — u)"x + ATh

Ab ifAT AN+ u=c
g(\) = { o
—oo otherwise
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Dual of an LP

What if we treat x > 0 as a constraint instead? (D = R").

e Dual is:

minimize c¢'x
X

subject to: Ax > b
x>0

maximize \'b
A>0, >0

subject to: ATA+pu=c

e Solution is the same, y acts as the slack variable.
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Dual of a convex QP
Suppose @ > 0. Let’s find the dual of the QP:

minimize %XTQX
X

subject to: Ax > b

e Lagrangian: L(x,\) = 2x"Qx + AT(b — Ax)

e Dual function: g(A) = min (1xTQx + AT(b — Ax))

Minimum occurs at: X = Q 1AT\

g(A) = —IATAQ 'ATA+ ATh
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Dual of a convex QP
Suppose @ > 0. Let’s find the dual of the QP:

minimize %XTQX
X

subject to: Ax > b

e Dual is also a QP:
maxi)\mize — %)\TAQ_lAT)\ +2Th

subject to: A >0

e |t's still easy to solve (maximizing a concave function)
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Sensitivity analysis

“eb f(x) max g\ v)=ATu—vTv
st. fi(x)<u Vi v
W) = v, Y s.t. A>0
[ ]

As with LPs, dual variables quantify the sensitivity of the
optimal cost to changes in each of the constraints.

A change in u; causes a bigger change in p* if AT is larger.

A change in v; causes a bigger change in p* if V7 is larger.

e If p*(u,v) is differentiable, then:
«_ 0p*(0,0) ._ _9p%(0,0)
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