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Studying color preferences provides a means to discover how perceptual experiences map onto cognitive
and affective judgments. A challenge is finding a parsimonious way to describe and predict patterns of
color preferences, which are complex with rich individual differences. One approach has been to model
color preferences using factors from metric color spaces to establish direct correspondences between
dimensions of color and preference. Prior work established that substantial, but not all, variance in color
preferences could be captured by weights on color space dimensions using multiple linear regression. The
question we address here is whether model fits may be improved by using different color metric
specifications. We therefore conducted a large-scale analysis of color space models, and focused
in-depth analysis on models that differed in color space (cone-contrast vs. CIELAB), coordinate system
within the color space (Cartesian vs. cylindrical), and factor degrees (1st degree only, or 1st and 2nd
degree). We used k-fold cross validation to avoid over-fitting the data and to ensure fair comparisons
across models. The best model was the 2nd-harmonic Lch model (‘‘LabC Cyl2”). Specified in CIELAB space,
it included 1st and 2nd harmonics of hue (capturing opponency in hue preferences and simultaneous
liking/disliking of both hues on an opponent axis, respectively), lightness, and chroma. These modeling
approaches can be used to characterize and compare patterns for group averages and individuals in
future datasets on color preference, or other measures in which correspondences between color appear-
ance and cognitive or affective judgments may exist.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Central goals in the study of color cognition are to understand
how the perceptual experience of color maps onto cognitive and
emotional judgments about color, and to understand how these
judgments influence people’s beliefs and behaviors. The study of
color preference provides a direct route to this goal. The results
of previous studies suggest that there are systematic mappings
between color appearance and preference (Guilford & Smith,
1959; Hurlbert & Ling, 2007; McManus, Jones, & Cottrell, 1981;
Ou, Luo, Woodcock, & Wright, 2004; Palmer & Schloss, 2010). For
example, hue preferences in industrialized cultures tend to vary
along a blueness-yellowness axis, with a peak at blue and a trough
around yellowish-green. Despite this robust pattern in average
preference data, there are large individual differences (for reviews,
see Hurlbert & Owen, 2015; Schloss & Palmer, 2015), the origins of
which are not entirely understood and have yet to be captured
fully through a predictive model.

The aim of this study is to determine the best quantitative
model for describing and predicting color preference patterns
based on color appearance alone. By ‘‘best”, we mean the model
having the smallest number of input factors that captures the lar-
gest amount of variance in preference across the individuals being
studied. The input factors are related to the specification of the
color stimulus only, and do not include any characteristics of the
individual. Thus, the aim is not to probe the causal origins of
individual differences in color preference (e.g., as in Schloss,
Hawthorne-Madell, & Palmer, 2015), but instead to describe and
predict color preference from a specification of color appearance
alone. In this sense, the rationale follows earlier attempts to
demonstrate that the ‘‘affective value” of a color may be predicted
systematically from accurate ‘‘color-specification” (Guilford &
Smith, 1959). Such a model also provides a parsimonious way to
characterize preference patterns across populations, through
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1 These (approximately) perceptually uniform color spaces are based on initial
specifications of colors in terms of the CIE XYZ tristimulus coordinate system, which
is based on standardized measurements of light sources and color-matching functions
of a standard observer. The tristimulus coordinates are thus related by linear
transformations to receptor spectral sensitivities of the average trichromatic
observer, but do not themselves form a uniform space or directly represent the
perceptual attributes of color.

2 Although two dimensions are in theory adequate to encode both hue and
saturation (corresponding to angle and radius in the chromaticity plane), in practice,
the two dimensions uncovered in the cone-opponent contrast model are indistin-
guishable from hue-angle-encoding dimensions, since for iso-saturation stimuli, the
radii do not vary.
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weights on the input factors (Hurlbert & Ling, 2007), provided the
model fits the data well.

Given that multiple color spaces and color ordering systems
exist for specifying color appearance, a first task in building a
model is choosing the color space in which the dimensions of
appearance are specified. These dimensions ultimately should
emerge as the ones that map best to variations in preference.
Although the causal origins of preferences are not addressed by
the model, the results may provide a deeper understanding of
how and at which stage of visual processing color preferences
are embedded. The second task is to determine the exact form of
the quantitative relationship between the color dimensions and
preference, e.g. whether it is linear or nonlinear. We approached
these tasks by conducting a large-scale analysis of multiple candi-
date color spaces and different coordinate representations within
them, to determine which were most effective at capturing varia-
tions in color preferences. We evaluated the models using two pre-
viously obtained datasets from different countries. A practical
outcome of this work is a set of tools for building models that com-
pactly describe and predict variations in color preference patterns
across large populations and individuals.

1.1. Considerations in constructing models of color preferences based
on color appearance

For a model based on color appearance to be useful in describ-
ing and predicting color preferences, it should satisfy at least two
criteria: (1) the dimensions of the color space used should capture
(and allow parameterization of) all possible variations in color
appearance and (2) variations in at least some of these dimensions
should elicit variations in color preference. For example, suppose a
model includes no dimension that captured variations in lightness.
It might fit color sets dominated by variations in hue and satura-
tion but not those that have variations in lightness. The first crite-
rion would be violated because it fails to capture all variations in
color appearance. Further, the second criterion would be violated
if color preferences for some datasets varied only along the light-
ness dimension (not in hue or saturation) because the model has
no dimensions to capture that variability. To these points, models
based on hue only were successful at characterizing individual
preferences for colors which varied only in hue (Hurlbert & Ling,
2007), but required augmentation by factors encoding saturation
and lightness to characterize preferences for colors that varied in
hue, saturation, and lightness (Ling & Hurlbert, 2007).

Models that meet the above criteria may nonetheless differ in
their ability to account for variations in color preference. These dif-
ferences arise from issues around the choice of color appearance
metric and the derivation of the quantitative relationships
between appearance dimensions and preference, as we describe
in more detail below.

1.1.1. Color spaces
Color appearance may be specified in a variety of color spaces or

color ordering systems, for example the CIE 1931 standard tristim-
ulus space (CIE, 2004) or the Munsell notation system (Munsell,
1921). A key question is whether the choice of color space affects
the ability of the model to fit the color preference data. It is beyond
the scope of this paper to review systematically all existing color
spaces and systems, but it is important to note that the differences
in their origins, standardizations, and uses make some spaces more
amenable to modeling preference quantitatively than others.

Generally speaking, we make a distinction between color spaces
defined initially in terms of the CIE standard colorimetric obser-
ver’s color-matching functions (‘‘standardized”) vs. those based
on human cone photoreceptor activations (‘‘physiological”). Both
types of color space are derived from color discrimination or
matching judgments made by human observers and specify color
appearance in terms of three basic descriptors. Here, for standard-
ized appearance spaces, we focus on the near perceptually-uniform
color spaces CIELAB and CIELUV1, which are based on data from per-
ceptual color-difference measurements of standardized color sam-
ples and which explicitly define descriptors corresponding to the
perceptual attributes of hue, chroma, and lightness (Kuehni &
Schwarz, 2008; Wyszecki & Stiles, 1982). CIELAB space is widely
used to specify color stimuli in visual psychophysics studies, and
has specifically been used for relating preference to color appear-
ance. Ou et al. (2004), for example, found that 70% of the variance
in average preference across a set of 20 colors could be accounted
for by a nonlinear function of the L⁄, a⁄, and b⁄ color coordinates.

‘‘Physiological” color spaces based directly on cone photorecep-
tor activations are derived from neurobiological or psychophysical
measurements of color discrimination, and their dimensions are
more readily related to early stages of visual processing
(Derrington, Krauskopf, & Lennie, 1984; Eskew, McLellan, &
Giulianini, 1999). For example, cone-opponent contrast spaces
(Derrington et al., 1984; Eskew et al., 1999), which we examine
here, quantify the appearance of a test color in terms of its contrast
against a uniform adapting background along three cardinal direc-
tions, defined by transformations of the L, M, and S cone photore-
ceptor activations, [S � (L +M)], [L �M] and [L +M], sometimes
referred to as ‘‘blue-yellow”, ‘‘red-green”, and ‘‘luminance” mecha-
nisms. These dimensions are generally equated with the second-
stage of color encoding in the human visual system and thought
to be represented by neurons at early stages in the visual pathway
(Lennie & Movshon, 2005). For brevity, we subsequently refer to
[S � (L +M)] as ‘‘S � LM”, [L �M] as ‘‘LM”, and [L +M] as ‘‘Lum”.

In developing a method for describing individual differences in
color preference, Hurlbert and Ling (2007) demonstrated the effec-
tiveness of these cone-opponent dimensions in capturing prefer-
ence variations. Specifically, they found that individuals’
preferences for eight colors, which varied only in hue (iso-
luminance, iso-saturation) could be decomposed into two principal
components that matched the [S � (L +M)] and [L �M] cone-
opponent contrast axes. A regression model captured 70% of the
variation in individual color preference judgments with the two
cone-contrast predictors. Therefore, preference patterns of individ-
ual participants could be parsimoniously characterized by person-
alized weights on these cone-contrast axes.

Hurlbert and Ling’s (2007) results suggest that when colors vary
primarily in hue, color appearance that is encoded by the physio-
logical second-stage chromatic mechanisms is sufficient to account
for variability in color preferences. Both model criteria are satisfied
for this specific dataset: (1) the dimensions of the space adequately
capture variations in color appearance and (2) variations in the
dimensions elicit variations in color preferences. However, this
two-component cone-contrast model should be insufficient for
describing preference patterns for colors that vary in saturation
and lightness in addition to hue because the first criterion will be
violated. When colors vary in hue, saturation, and lightness, more
dimensions are required to represent them.2
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Ling and Hurlbert (2007) addressed this limitation by adding
two components to the cone-contrast model: lightness (or lumi-
nance contrast, in cone-contrast space) and saturation (suv in CIE-
LUV space). They tested this model on average and individual UK
participants’ preferences for different sets of colors that varied in
hue, saturation, and lightness. Depending on the color set and task,
the extended cone contrast model accounted for 47–74% of the
variance in average color preferences and an average of 46–61%
of the variance in individual participants’ color preferences. The
greater end of that range was for color sets that varied less in sat-
uration and lightness. For preference datasets from US participants
using color sets that had more extreme values of saturation, the
model explained far less variance: 37% in average color preferences
(Palmer & Schloss, 2010) and an average of 39% in individual par-
ticipants’ color preferences (Schloss et al., 2015).

This reduction in performance of the extended cone-contrast
model for broader stimulus sets suggests that a different set of
color appearance metrics might be more effective than second-
stage encoding mechanisms in capturing variations in preference.
To address this question, Palmer and Schloss (2010) tested how
well preferences were accounted for by participants’ subjective
ratings of yellowness vs. blueness, redness vs. greenness, lightness,
and saturation of each color. These subjective color appearance
dimensions accounted for more variance in group average color
preferences (60%) than did the extended cone-contrast model
(37%) (Palmer & Schloss, 2010), and also performed better in
describing individual preferences (Schloss et al., 2015). Further,
Sorokowski, Sorokowska, and Witzel (2014) found that gender dif-
ferences in color preference were better modeled by a ‘‘red-versus-
blue” component (calculated from hue similarity with selected red
and blue colors, ignoring variations in lightness) than by cone-
opponent contrast axes, which suggests that higher-level categor-
ical representations might better characterize color preferences
than low-level dimensions.

It is also clear in some preference datasets that there are sub-
stantial interactions between hue, saturation and lightness. For
example, there is a substantial effect of lightness for ‘‘warm” hues
(dark oranges and dark yellows are especially disliked, whereas
very light oranges and yellow are liked) (Palmer & Schloss, 2010;
Schloss et al., 2015; Taylor & Franklin, 2012; Yokosawa, Schloss,
Asano, & Palmer, 2016). The fact that this striking shift in prefer-
ence occurs with a change in categorization of the color from
brownish to pure yellow suggests that a later-stage neural encod-
ing model, which better predicts categorical color appearance, may
be necessary to capture variations in preference. Taken together,
these results suggest that color space models that characterize col-
ors using higher stages in visual processing might be more effec-
tive at accounting for color preferences.

1.1.2. Coordinate systems
A second consideration is the choice of coordinate systemwithin

the color space. A particular location in color spacemay be specified
in Cartesian coordinates (e.g. distance along x and y axes) or
cylindrical coordinates (e.g. radius and angle with respect to the
origin). These coordinates may have different perceptual correlates.
For example, in the CIELAB chromaticity plane, specifying a color’s
location by its a⁄ and b⁄ coordinates corresponds (roughly) to
specifying its redness/greenness and blueness/yellowness, respec-
tively, relative to the color at the origin (the ‘‘neutral” color). The

cylindrical coordinates of radius (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
) and angle

(atan2ðb; aÞ) are defined as the approximate correlates of the
perceptual attributes of chroma3 and hue4. CIELAB L⁄ is the correlate
3 Chroma (C⁄) is related to saturation (s) by the transformation C⁄/L⁄ = s.
4 In these equations and references to L⁄, a⁄ and b⁄ axes in subsequent sections, we

use L, a, and b, dropping the asterisk to avoid clutter when exponents are used.
of lightness, the same in both the Cartesian and cylindrical coordinate
systems.

A key difference between the two coordinate systems is that
hue and saturation are coupled in the Cartesian system but decou-
pled in the cylindrical systems. In the cylindrical representation,
variations in angle encode variations of hue independent of
chroma, and variations of radius encode variations in chroma (or
saturation, at constant lightness) independent of hue. Previous
models of color preference have represented both hue and satura-
tion by mixing Cartesian and cylindrical coordinates, e.g., with the
addition of suv in the extended cone contrast model (Ling &
Hurlbert, 2007) and the use of saturation ratings in the color
appearance model (Palmer & Schloss, 2010). Adding a separate fac-
tor for saturation provides a way to capture variations of prefer-
ence with saturation. However, in both examples, hue is encoded
by two Cartesian coordinates corresponding roughly to redness-
greenness and blueness-yellowness, which are not independent
of saturation, unless their values are normalized to the unit circle.

Both sets of coordinates may be used in any color space. That is,
for a color vector in any color space, its hue may be defined as the
angle with respect to the origin, and its saturation (or lightness-
normalized chroma) as the magnitude. The extent to which hue,
saturation, and lightness coordinates defined in this way in any
particular color space actually correspond to the perceptual attri-
butes of hue, saturation and lightness, though, is not completely
understood, and has been investigated by color appearance stud-
ies. For example, phenomena such as the Abney effect describe
the deviation of perceived hue from the radial hue line in the CIE
chromaticity plane (Wyszecki & Stiles, 1982), and a recent study
systematically examines how well seven different measures of sat-
uration predict perceived saturation in natural images (Schiller &
Gegenfurtner, 2016).

It remains an open question as to where and how neuronal
activity in the visual system encodes these perceptual attributes,
and to what extent they interact in neuronal representations,
although recent findings suggest that representations differ
between low- and high-level stages of visual processing (Bohon,
Hermann, Hansen, & Conway, 2016).

1.1.3. Factor degrees
Within a given color space and coordinate system, different

functions of the coordinates may be inputs to a quantitative model.
Linear functions use 1st degree factors only, whereas quadratic
functions use 2nd degree factors in addition to 1st degree factors.
In Cartesian coordinates, if the 1st degree factors are x and y, then
the 2nd degree factors are x2, y2, and xy. In cylindrical coordinates,
we defined the 1st degree factor as the 1st harmonic of the hue
angle (with a period of 360�) and the 2nd degree as the 2nd har-
monic (with a period of 180�).

The interpretation and effect of different degrees of factor
depends on the color space and coordinates. For example, in a color
space with color-opponent axes (such as CIELAB or cone-contrast
space, as opposed to RGB space), a positive weighting on one axis
means the observer likes hues at its positive pole and dislikes hues
at its negative pole. Using 1st degree factors only, the model can
capture greater preference for one pole than the other, but it can-
not capture a simultaneous liking or disliking for both poles of the
color-opponent axis. Earlier models using 1st degree factors only in
color-opponent spaces (Hurlbert & Ling, 2007; Ling & Hurlbert,
2007; Ou et al., 2004; Palmer & Schloss, 2010; Sorokowski et al.,
2014) effectively assumed that components underlying color pref-
erences operate in a hue opponent nature, which is not necessarily
true (Bimler, Brunt, Lanning, & Bonnardel, 2014; Schloss & Palmer,
2017). It is not necessary for individuals who like red to also
dislike green; they can like (or dislike) both red and green. Further,
the same model weight of zero on an opponent axis may result



5 Palmer and Schloss (2010) argued how causal directions might be inferred from
this correlational analysis but the evidence provided was still correlational. Further
evidence from experimental manipulations support the causal claim that object
preferences cause color preferences (Strauss, Schloss, & Palmer, 2013).
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from drastically different patterns of color preferences: strong lik-
ing of both endpoints of the dimension, strong disliking of both
endpoints of the dimension, or total indifference to that dimension.
With 2nd degree factors, however, a model is able to represent
non-opponent preferences for opponent hues on one dimension.
This observation is a key motivation for our use of 2nd degree fac-
tors in the models we test.

Other evidence supports this reasoning. Using Principal Compo-
nents Analysis, Bimler et al. (2014) found there were four compo-
nents to hue preference, two of which were hue opponent (one
peak and one trough), but two of which were not hue opponent
(two peaks and two troughs). As Bimler et al. (2014) noted,
double-peaked components can account for patterns in which peo-
ple have the same preference valence for both poles of a color-
opponent axis (i.e. are both liked or disliked). This result is consis-
tent with early evidence that hue preferences can be fit by a
weighted combination of multiple harmonics, in which the first
harmonic (one peak/one trough) and second harmonic (two
peaks/two troughs) accounted for 75% of the variation (Stamm,
1955). Therefore, models that contain 1st and 2nd degree factors
will likely be more effective than models that contain 1st degree
factors alone.

1.2. On the distinction between describing, predicting, and explaining
color preferences

When modeling color preferences it is important to consider
what kinds of conclusions can be drawn from the model results.
The results of the same kind of statistical model, such as multiple
linear regression (MLR) used here, can support different kinds of
conclusions depending on the types of factors that are used. We
make a distinction between three core goals: describing, predict-
ing, and explaining patterns of color preference data. The terms
‘‘describe”, ‘‘predict”, and ‘‘explain” are often used interchangeably
in the literature when discussing how well a model fits a color
preference dataset. One might say that a regression model describes
x%, explains x%, or predicts x% of the variance in color preferences. It
is reasonable to use these terms interchangeably when discussing
statistics, but it can obfuscate important theoretical distinctions
about the kinds of conclusions that can be drawn from the results.
Here we clarify those distinctions.

Describing color preferences involves characterizing a pattern
in observed data (e.g., on average, people like blues more than yel-
lows). Descriptions are useful for communicating patterns in color
preference data and determining what patterns need to be
explained by theories. However, descriptions are not theories in
and of themselves. For example, the description that Japanese par-
ticipants like lighter colors more than US participants do
(Yokosawa et al., 2016) highlights a difference but it does not
explain why that difference exists.

Predicting color preferences involves using information about
how much people like colors observed by the model to predict
preferences for colors unobserved by the model. The goal is to
accurately anticipate future judgments given knowledge about
prior judgments. The desire is to be as accurate as possible, even
if the dimensions are not interpretable. Predicting and describing
color preferences can have a symbiotic relationship. For example,
one might use a complex associative model with hidden layers
for the purpose of predicting or interpolating preferences, but
use a simpler, qualitative model for characterizing the nature of
the predictions.

Explanations of color preferences define possible causal
accounts that answer how and why questions such as: How are
color preferences formed? Why do they exist? Why do they differ
between individuals? Why do they change over time? These how
andwhy questions are fundamentally different from thewhat ques-
tions involved in describing and predicting color preferences (e.g.,
what colors do people like?). Explanations are often tested with
the same kinds of regression models used to describe color prefer-
ences, but the difference lies in the nature of the factors that go into
the model. For example, Palmer and Schloss (2010) used linear
regression to account for color preferences using different kinds
of models. Their Weighted Affective Valence Estimate (WAVE)
model tested the hypothesis that color preferences could be
explained by howmuch people like objects that are associated with
the colors (Ecological Valence Theory; EVT)5. Their color appearance
model evaluated how well color preferences could be described by
dimensions of color appearance (yellow/blue, red/green, light/dark,
saturation). The WAVE model provides support for a theoretical
account that explains how color preferences are formed, whereas
the color appearance model provides a useful description of the data
without explainingwhy color preferencesmap onto color appearance
axes in the way they do.

1.3. Current approach: describing and predicting but not explaining

The goals of this study are to understand which color space
representations are most effective at describing observed patterns
of color preferences and predicting preferences for colors
previously unseen by the model. We conducted new analyses of
data from previous preference studies (Ling & Hurlbert, 2007;
Schloss et al., 2015) to determine which color space models are
most effective, with the fewest number of factors. We compare
models that characterize colors in different color spaces likely to
correspond to different stages of visual processing. We also
introduce the use of cylindrical coordinates and periodic
regression to better capture the perceptual dimensions of hue,
chroma, and lightness. By doing so, we are able to systematically
evaluate how color space, coordinate system, and factor degree
influence the ability of color space models to fit color preference
data.

For each model, we use multiple linear regressions to determine
weights on each of the factors for a given group or individual for a
given set of colors. The accuracy of the model in describing the
observed data is quantified as the fit (R2) between the weighted
combination of factors and the original data. The accuracy of the
model in predicting new data is quantified as R2 between the model
predictions for untrained colors (using the weights from the
regression equation calculated from the trained colors) and prefer-
ences for those untrained colors.

Our scope excludes reviewing and evaluating evidence for fac-
tors that influence individual variations, including culture
(Choungourian, 1968; Reddy & Bennett, 1985; Saito, 1981, 1996;
Yokosawa et al., 2016), sex (Bimler et al., 2014; Eysenck, 1941;
Helson & Lansford, 1970; McManus et al., 1981), age (Adams,
1987; Dittmar, 2011; Pereverzeva & Teller, 2004), and ecological
associations (Schloss, Strauss, & Palmer, 2013; Schloss et al.,
2015), (for reviews, see Bimler et al., 2014; Hurlbert & Owen,
2015; Schloss & Palmer, 2015). Instead, we focus on determining
which models are more/less effective for capturing such individual
variations, whatever their cause.

Our approach precludes using color preference models that
may have strong explanatory value but are methodologically
cumbersome to implement. For example, the WAVE model helps
explain how color preferences are formed, why they differ
between individuals, and why they change over time (Palmer
& Schloss, 2010; Schloss & Palmer, 2017). However, using the
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WAVE model to predict preferences for new, untested colors is
methodologically expensive6 (Schloss et al., 2015). It would be
faster and easier to ask people to simply rate their preference
for many new colors than to collect the data to form the model
predictions. Although the models we studied do not provide
explanatory accounts, they are powerful tools for describing and
predicting color preferences. Moreover, they are straightforward
to implement because they are derived from factors that are pre-
defined in standard color spaces.

Our approach, like that of some other studies (e.g. Hurlbert &
Ling, 2007), goes beyond earlier attempts to derive quantitative
relationships between color appearance coordinates and color
preference (e.g. Ou et al., 2004) in doing so not only for
average data from a single population, but also for individual data
within different populations. We go beyond earlier analyses of
individual variations in color preference (e.g. Hurlbert & Ling,
2007; Ling & Hurlbert, 2007; Schloss et al., 2015; Bimler et al.,
2014) by explicitly testing models built from data on subsets of
colors, using the technique of k-fold cross-validation to predict
individuals’ preferences for previously unseen colors. By using
cross-validation, we are able to evaluate the performance of
models with more parameters than were previously used without
concern about over-fitting the data.
2. Methods

In this section, we first describe the color preference datasets
that were used for testing the models (Section 2.1). We then
describe the models we evaluated closely in this study
(Section 2.2), which are a representative subset of 40 color
space-based models described in the Supplementary Material.
Finally, we describe our approach to evaluating the models using
k-fold cross-validation (Section 2.3).

2.1. Description of color preference datasets

We evaluated preference models using two independent data-
sets, Schloss et al.’s (2015) dataset from the Berkeley Color Project
(32 colors; ‘‘BCP-32”) and Ling and Hurlbert’s (2007) Newcastle
University dataset (126 colors; ‘‘NCL-126”). We chose these two
datasets because they have been previously used to study individ-
ual differences in color preferences and contain data from different
populations (US vs. UK) on different sets of colors, as described
below.

2.1.1. BCP-32 color preference dataset
The methods for obtaining the color preference data for the

BCP-32 colors used here are described in Schloss et al. (2015),
and summarized as follows.

2.1.1.1. Colors. The BCP-32 colors contain eight hues (red, orange,
yellow, chartreuse, green, cyan, blue, and purple) sampled at
four saturation/lightness levels (saturated, light, muted, and
dark) (see Table S8 in the Supplementary Material for
coordinates in CIE 1931 xyY space and in Munsell space). The
saturated set contained the most saturated color of each hue
that could be produced on Palmer and Schloss’s (2010) display.
The Munsell value and chroma of the light, muted and dark col-
6 The WAVE for a color represents the mean valence of all objects associated with
the target color, weighted by how well the color of the object matches the target
color. Calculating the WAVE for a color for a given individual or group of participants
involves obtaining a representative set of objects associated with that color, the
valence of each object for that individual/group, and a metric of how well the color of
each object matches the target color.
ors were scaled with respect to the value and chroma of the
saturated colors of each hue. The light, muted, and dark colors
within each Munsell hue differed in value but had equal Munsell
chroma. The colors were presented on a neutral gray background
that approximated CIE Illuminant C (CIE x = 0.312, y = 0.318,
Y = 19.26). To convert to cone-contrast coordinates here, we
use the background color as the neutral point. To convert to
CIELAB and CIELUV, we use a white point with the same
chromaticity as the background but with a luminance of
Y = 116 cd/m2.7

2.1.1.2. Data collection. As described in Schloss et al. (2015) there
were 48 participants (24 females) with normal trichromatic color
vision. During the experiment they were presented with each
color one at time. They rated how much they liked each color
on a line-mark slider scale from ‘‘not at all” to ‘‘very much” by
sliding the cursor along the scale and clicking to record their
response. Participants judged each color four times divided over
two testing sessions (four blocks) in a blocked randomized
design. The colors were displayed as a small square
(100 � 100 pixel) centered on the screen of a 20” iMac LCD
monitor (1680 � 1050 pixel resolution at 60 Hz resolution). Trials
lasted until participants made their response, and the next trial
began 500 ms later. The response data were scaled to range from
�100 to +100. Before beginning the experiment participants
completed an anchoring task so they knew what liking ‘‘not at
all” and ‘‘very much” meant for them in the context of these col-
ors (see Schloss et al., 2015 for details).

2.1.2. NCL-126 color preference dataset
The methods for obtaining the color preference data for the

NCL-126 colors used here are described in Ling and Hurlbert
(2007), and summarized below.

2.1.2.1. Colors. The NCL-126 chromatic colors contain three sub-
sets of colors: the Munsell set, the NCS set and the CIELUV set
(called Group 1, Group 2, and Group 3 in Ling and Hurlbert
(2007), respectively). See Table S9 in the Supplementary Material
for coordinates in CIE 1931 xyY. The 85 colors in the Munsell set
were chosen to include 10 Munsell hues (R, YR, Y, GY, G, BG, B,
PB, P, RP), sampled at three value levels (3, 5, and 7), and three
chroma levels (2, 6, and 8), excluding those out of gamut for
the display. For each of the ten hues, the set also included the
highest value/chroma combination displayable. The 17 colors of
the NCS set were the chromatic colors from Ou et al. (2004).
The 24 colors in the CIELUV set included 8 hues at different sat-
uration and lightness levels in CIELUV coordinates, including
eight hues at the same saturation and lightness as in the stimulus
set of Hurlbert and Ling (2007).8 The NCL-126 colors were
presented on a neutral gray background (CIE x = 0.3127, y = 0.329,
Y = 50 cd/m2). To convert to cone-contrast coordinates here, we
use the background color as the neutral point. To convert to CIELAB
and CIELUV we use a white point with the same chromaticity as
the background, and a luminance of Y = 110 cd/m2.

2.1.2.2. Data collection. The NCL-126 color preference dataset
modeled here is a subset of Ling and Hurlbert’s (2007) dataset,
including all of the ‘‘Task 1” ratings data for 126 chromatic colors
for 40 participants, 20 males (mean age 20.8 yrs.) and 20 females
(mean age 19.2 yrs.). All participants had normal trichromatic
7 Participants also rated their preferences for 5 achromatic colors, including black,
white, and three intermediate grays. The luminance of the white was 116 cd/m2.

8 The full stimulus set included 8 achromatic colors from the Munsell and NCS
systems, which we do not analyze here because they are at the origin of the
chromaticity plane and do not have hue angles to input into cylindrical models.
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vision. Participants were presented with rectangular color patches
(2� � 3� in size) one at a time in a randomized order. They were
asked to rate each color in terms of ‘‘liked-ness” by using a hori-
zontal slider bar scaled from ‘‘Dislike” on its left end to ‘‘Like” on
its right end.9 Participants rated each color twice in separate ses-
sions and responses were averaged over testing sessions.

2.2. Description of the models

We began with an exploratory examination of 40 different MLR
models to evaluate which combinations of color metric factors
were most effective at describing and predicting color preferences.
We varied the color space, the coordinate system used to represent
colors within that color space, and the number of degrees in each
factor. A model with three factors (f1, f2, and f3), for example, would
use a regression equation with weights on each factor (w1, w2, and
w3) of the form:

preference ¼ kþw1f 1 þw2f 2 þw3f 3 ð1Þ
The factors used in the various models were computed from

color dimensions in standard color spaces. Details about the full
set of 40 models can be found in the Supplementary Material.
The models are based on five representative color spaces, including
standardized and physiological spaces, with varying color dimen-
sions, coordinate systems, and factor degrees. Table S1 lists the
color dimensions used and their spaces of origin. Tables S2–S7
describe the factors within each model, which can be broken down
into the following categories: basic models, augmented models,
quadratic models, unipolar models, categorical models, and cylin-
drical models.

For each of the 40 models in the exploratory analyses, we calcu-
lated its ability to fit existing preference data and predict untrained
data, using the techniques described in detail below (Section 2.3).
Based on the pattern of model fits (Figs. S1–S4 in the Supplemen-
tary Material), we eliminated some models from further in-depth
study, as described in Section 2.2.1. For example, a model corre-
sponding to higher-order categorical processing of color was
removed from further study because it required more factors to
perform as well as the other selected models. Therefore, to system-
atically investigate the effects of key model features, we focused on
a subset of eight models that fit into the following orthogonal
design: 2 Color Spaces � 2 Coordinate Systems � 2 Factor Degrees
(Table 1). In particular, this allowed us to compare representatives
of standardized and physiological color spaces.

2.2.1. Color spaces and dimensions
In the preliminary analyses (see Supplementary Material), we

observed that models built in the two standardized perceptually
uniform spaces, CIELUV and CIELAB, performed similarly to each
other and better than those in CIEXYZ space, for similar levels of
complexity. Therefore, we selected only one perceptually uniform
space as representative of standardized spaces (CIELAB), which is
the most widely used standardized perceptually near-uniform
color space. Several versions of cone-opponent contrast spaces
exist; (‘‘DKL” space, Derrington et al., 1984 and ‘‘ESK” space,
Eskew et al., 1999); we selected the latter as the representative
of a physiological space for further investigation. In each of the
two representative color spaces, we defined four dimensions: 2
hue, 1 lightness, and 1 saturation/chroma.
9 Ling and Hurlbert’s (2007) participants also completed a two-alternative forced
choice (2AFC) task for a subset of the colors. The data did not differ significantly from
the ratings data and the weights obtained from the models were highly positively
correlated between all cross-comparison pairs of tasks and color sets. Therefore the
model results from this paper should generalize to preferences obtained from 2AFC
tasks.
The cone-contrast ‘‘CCLS” models thus include the cone-
opponent and luminance factors from cone-contrast space (LM,
S � LM, and L +M), together with saturation (suv) from CIELUV
space. The CCLS model in Cartesian coordinates with 1st degree
factors corresponds to Ling and Hurlbert’s (2007) extended cone-
contrast model, which has been studied extensively in the litera-
ture. Therefore, we chose this color space for closer examination
in order to enable direct comparisons to prior research. The ‘‘LabC”
models include L, a, b and chroma (Cab) from CIELAB space.

The ‘‘LabC” dimensions also correlate well with the dimensions
in Palmer and Schloss’s (2010) subjective color appearance model:
for the BCP-32 colors, light-dark ratings correlate with L (r = 0.96,
p < 0.001), red-green ratings with a (r = 0.89, p < 0.001), yellow-
blue ratings with b (r = 0.88, p < 0.001), and saturation ratings with
Cab (r = 0.76, p < 0.001). Thus, the LabC factors may provide an
approximation to the subjective appearance model but are
methodologically less expensive to use because they do not require
individual participant judgments for each color.

2.2.2. Coordinate systems
The coordinate systems we tested were Cartesian and cylindri-

cal systems, which are different ways of specifying the same colors
within cone-contrast and CIELAB spaces. The dimensions coding
for lightness and saturation/chroma were the same in the models
for both systems but the dimensions coding hue differed. In the
Cartesian system, hue was represented in terms of x and y axes,
which were LM and S � LM in CCLS models and a and b in LabC
models. As mentioned in the introduction, hue is confounded with
saturation/chroma in this representation, which is why previous
studies using Cartesian representations of hue had separate factors
coding for saturation/chroma (Ling & Hurlbert, 2007; Palmer &
Schloss, 2010). Although this additional information is redundant
in the sense that it can be derived from existing basic factors

(e.g. chroma in CIELAB coordinates satisfies Cab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
), it

might nevertheless improve the performance of MLR because the
dependence between dimensions is nonlinear.

In the cylindrical system, hue was represented in terms of cos
(h) and sin(h), where h is hue angle in cone-contrast space or CIE-
LAB space. In cone-contrast space, we calculate h as
hcc ¼ atan2ðS� LM; LMÞ. In CIELAB space h is hab ¼ atan2ðb; aÞ
(i.e., h in CIE Lch space). We used the convention 0� 6 h < 360�.
Given that hue is a periodic quantity, hue angle cannot be used
directly as a factor in MLR because assigning it a nonzero weight
would lead to different predictions for 0� and 360�, even though
those hues are equivalent. Therefore, we used periodic factors in
our regression analyses, which is a standard way of addressing this
issue of periodicity in linear modeling.

Using the sine and cosine of hue as separate factors is standard
in Fourier decomposition. The additional degree of freedom
afforded by using both sine and cosine yields a model that is
rotation-invariant; the same fit is produced regardless of how the
reference hue angle of zero is assigned. The weights on the sine
and cosine factors (w1, w2) can be interpreted as weights on two
principal hue-opponent mechanisms in the chosen color space,
assuming the space has opponent axes as in cone-contrast and CIE-
LAB spaces. The dominant hue, or the hue angle at which color pref-
erence is maximum, can be calculated directly from the weighted
combination of the two mechanisms. Linear combinations of sine
and cosine functions yield a single sinusoid curve with a phase
shift, according to the following formula:

w1 cosðhÞ þw2 sinðhÞ ¼ A cosðh� dÞ ð2Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þw2
2

q
and d ¼ atan2ðw2;w1Þ. A is the amplitude of

the resulting sinusoid, and d is the hue angle where the curve
reaches its peak. Preference falls off as the hue shifts away from d,



Table 1
Models constructed by choosing one of two color spaces (cone-contrast or CIELAB), one of two coordinate systems (Cartesian or cylindrical), and either first alone or first- and
second-degree factors. The names we use to describe the model and corresponding factors are also listed.

Color Space Coordinate System Factor Degree Model Name Factors

Cone-Contrast + CIELUV suv Cart 1st CCLS Cart LM; S� LM; Lum; suv
2nd CCLS Cart2 LM; S� LM; ðLMÞ2; ðS� LMÞ2; ðLMÞðS� LMÞ; Lum; suv

Cyl 1st CCLS Cyl cosðhccÞ; sinðhccÞ; Lum; suv
2nd CCLS Cyl2 cosðhccÞ; sinðhccÞ; cosð2hccÞ; sinð2hccÞ; Lum; suv

CIELAB Cart 1st LabC Cart L; a; b; Cab

2nd LabC Cart2 L; a; b; a2; b2; ab; Cab

Cyl 1st LabC Cyl L; cosðhabÞ; sinðhabÞ; Cab

2nd LabC Cyl2 L; cosðhabÞ; sinðhabÞ; cosð2habÞ; sinð2habÞ; Cab
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and it reaches a minimum at the hue opposite d. The constant factor
A, which is always nonnegative, indicates the strength of the effect.

This decomposition is illustrated in Fig. 1 for four computation-
ally generated patterns of color preferences. Fig. 1A illustrates a
hue preference profile for a hypothetical individual who strongly
prefers reds with a peak around d ¼ 40� in CIELAB space. The first
two rows sum to the third, illustrating the decomposition:
0:766 cosðhÞ þ 0:643 sinðhÞ ¼ cosðh� 40�Þ. The preference peaks
are also visualized in polar plots on the right. Similar decomposi-
tions are shown in Fig. 1B–D, which illustrate hue preference pro-
files for yellow, green, and blue, respectively.

2.2.3. Factor degrees
Within each coordinate system, we analyzed models that had

1st degree factors only and models that had 1st and 2nd degree
factors. In the Cartesian system 1st degree factors were LM and
S � LM in CCLS models and a and b in LabC models. In the Cartesian
system 2nd degree factors were the quadratic factors (LM)2,

(S � LM)2, (LM)(S � LM) in CCLS models and a2; b2
; ab in LabCmod-

els. This is the two-dimensional equivalent of polynomial regres-
sion. Adding quadratic terms allows the model to capture more
intricate dependencies among factors, such as having a similar
preference for opposing hues. Including the quadratic cross-
terms such as ab makes model fits invariant under linear transfor-
mations of the variables. For example, replacing a and b with
ða� bÞ and ðaþ bÞ respectively will not change the model
predictions. In particular, this also makes the model invariant
under rotations in the ða; bÞ plane.

In the cylindrical system, the 1st degree factors were cosðhÞ and
sinðhÞ as described in Section 2.3.2 and Fig. 1. The 2nd degree fac-
tors were the second harmonics; cosð2hÞ and sinð2hÞ. As with the
basic cylindrical models, coefficients corresponding to the 2nd har-
monic can also be decomposed in terms of a dominant hue angle
and amplitude:

w3 cosð2hÞ þw4 sinð2hÞ ¼ A0 cosð2ðh� d0ÞÞ ð3Þ

where A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

3 þw2
4

q
and d0 ¼ 1

2 atan2ðw4;w3Þ. For the 2nd har-

monic, the dominant hue angle satisfies 0� 6 d0 < 180� and indi-
cates a preference axis; maximum preference occurs for opposite
hues aligned with the axis and minimum preference occurs at oppo-
site hues orthogonal to the axis.

Fig. 2 illustrates how a complex hue preference profile is
decomposed into its 1st and 2nd harmonics. The preference profile
in this example shows the hue preference predictions of our 2nd-
harmonic Lch model (‘‘LabC Cyl2”) evaluated on the average pref-
erences from the BCP-32 dataset. The details of the model predic-
tions are in Section 3.3, but for now it can be considered as a
typical hue preference profile. The process of using MLR amounts
to searching for the coefficients that should multiply each of the
four simpler sinusoids (two 1st harmonics and two 2nd harmonics)
so they combine into the best fit for the data. The first harmonic
shows a blue dominant hue, with a peak around blue and a trough
around yellow. The second harmonic shows an axis from orangish-
red to bluish-green with peaks around orangish-red and bluish-
green and troughs around yellowish-green and blueish-purple.
Summing the 1st and 2nd harmonics results in the characteristic
hue preference profile that has a broad peak around blue/bluish-
green, a trough around yellow, and a moderate preference for red
(e.g., Guilford & Smith, 1959; Palmer & Schloss, 2010; Taylor &
Franklin, 2012).

2.3. Approach to evaluating the models

We evaluated the models using the BCP-32 and NCL-126 data-
sets. For each dataset, we computed the variance accounted for by
each of the MLR models in describing the (1) color preference judg-
ments averaged over participants and (2) color preference judg-
ments of each individual participant. The average models assign
a single set of weights to the factors, which characterizes the aver-
age pattern of color preferences. The individual models can assign
a different set of weights to the factors for each participant to best
characterize that individual’s pattern of color preferences.

Models with more factors are expected to perform better but
they run the risk of overfitting the data. To mitigate this concern,
we used k-fold cross-validation (Friedman, Hastie, & Tibshirani,
2001), which estimates the residual error that might occur if the
model were used to predict outcomes that were not part of the
original dataset.

We applied k-fold cross validation across colors as follows:

1. Randomly partition the colors into k sets of equal size. These are
called folds.

2. Assign one fold to be the test set, and the remaining k� 1 folds
to be the training set.

3. Find the model weights associated with the training set, and
compute the residual error when this model is used to predict
the test set.

4. Repeat steps 2–3 using the k different folds as training sets and
compute the average residual error.

5. Repeat steps 1–4 several times, choosing different random par-
titions every time, and average all the residual errors obtained.

Typical choices for k are five or ten. For convenience, we chose
values of k that were divisible by the total number of colors in the
dataset: k ¼ 8 for BCP-32 colors and k ¼ 9 for NCL-126 colors. For
step 5, we repeated the entire process ten times.

Unlike the residual error computed on the entire dataset, which
continues to shrink as we add more factors to a model, the residual
error estimate from k-fold cross-validation will grow if the model
begins to over-fit to the data. In general, the error estimate from k-
fold cross-validation is always larger than the residual error found
by using the entire dataset. Consequently, the variance explained is
lower when using k-fold cross-validation. Although the models we



Fig. 1. Hue preference profiles that were computationally generated to illustrate how the cylindrical model represents color preferences of hypothetical individuals who most
prefer red (A) yellow, (B), green (C), or blue (D). Each panel shows Fourier decomposition of sinusoidal hue preference profiles for the dominant hue. In each panel, the top plot
shows the cosðhÞ component, the second from the top shows the sinðhÞ component, and the third shows the sum. Each graph may also be represented in polar coordinates
(shown on the right). The polar plots are shifted so that the origin corresponds to a y-axis value of �1. The dominant hue is indicated by colored vertical lines in the
rectangular plots and radial lines in the polar plots.

106 K.B. Schloss et al. / Vision Research 151 (2018) 99–116



Fig. 2. Fourier decomposition of the average color preferences from the BCP-32 dataset. The left column shows the decomposition of the 1st harmonic into its fundamental
components cosðhÞ and sinðhÞ. The dominant 1st harmonic is blue, shown as a thick vertical line (in the rectangular plots) or radial line (in the polar plots). The right column
shows the decomposition of the 2nd harmonic into its fundamental components cosð2hÞ, and sinð2hÞ. The dominant 2nd harmonic is along an orangish-red to bluish-green
axis, shown in the thin colored lines in the rectangular and polar plots. The bottom plot shows the combination of all four components (the model prediction), with the thick
lines representing the dominant hue angle (1st harmonic) and the thin lines representing the dominant axis (2nd harmonic).
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evaluated differed in the number of parameters fitted, the R2 val-
ues obtained from the cross-validation procedure provide a good-
ness of fit measure that allows us to make direct comparisons
across models.
3. Results and discussion

Fig. 3 shows the proportion of variance (R2) that each of the
eight models accounted for in the color preference data (exact val-
ues reported in Table 2). In the following sections we compare the
model fits on the average and individual data for each dataset
using summary R2 values. These R2 values were computed in
slightly different ways for the average vs. individual datasets and
for the ‘‘All Data” vs. cross-validated datasets, which we describe
in each section before discussing the results. We conducted the
main statistical analyses on the individual cross-validated data
because we could use analyses of variance (ANOVAs) to compare
the means across individuals without concern about overfitting
providing an unfair advantage to larger numbers of factors
(Section 3.4).

3.1. Describing average color preferences for all the colors

3.1.1. Calculating summary R2

The summary R2 values for the fits to the average of all the color
preference data within a dataset (‘‘All Data”) are simply the
squared correlations between average data and model predictions.
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Fig. 3. Proportion of variance (summary R2) accounted for by each model using all the colors (‘‘All Data”) and k-fold cross-validation for the BCP-32 dataset (A) averaged over
participants and (B) for individual participants; the NCL-126 dataset (C) averaged over participants and (D) for individual participants; and the NCL-32 colors (subset of NCL-
126 matched to BCP-32 colors, see text in Section 3.4 for details) (E) averaged over participants and (F) for individual participants. See the text for descriptions of how
summary R2 values were calculated. The error bars in B, D, and F represent the standard errors of the means of the model fits across individual participants. The thick outline
around the cross-validation model fits in B, D, and F indicate the data on which we conducted the main statistical tests to compare models (Section 3.4). Table 2 presents the
summary R2 values in this figure.
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This is a standard way of modeling average color preferences (e.g.,
Ling & Hurlbert, 2007; Palmer & Schloss, 2010).

3.1.2. Model results
The All Data plots in Fig. 3A and C show how well each model

describes the average pattern of color preferences in the BCP-32
and NCL-126 datasets, respectively. Recall that the CCLS Cart
model is Ling and Hurlbert’s (2007) extended-cone contrast model.
CCLS Cart accounted for 39% of the variance in the average BCP-32
dataset and 61% in the NCL-126 dataset, comparable to prior
reports (Ling & Hurlbert, 2007; Palmer & Schloss, 2010).

Compared with the other models, the CCLS Cart model was the
weakest for both the BCP-32 data set (Fig. 3A) and the NCL-126
dataset (Fig. 3C). For the BCP-32 dataset, fits were greater for LabC



Table 2
Summary R2 values for each model corresponding to Fig. 3 (see details in text).

Dataset Level Model Type CCLS Cart LabC Cart CCLS Cart2 LabC Cart2 CCLS Cyl LabC Cyl CCLS Cyl2 LabC Cyl2

BCP-32 Avg. All Data 0.39 0.48 0.51 0.70 0.54 0.65 0.61 0.76
8-fold cv 0.21 0.22 0.30 0.45 0.37 0.48 0.39 0.59

Indiv. All Data 0.38 0.48 0.54 0.64 0.44 0.52 0.55 0.66
8-fold cv 0.21 0.29 0.30 0.38 0.26 0.35 0.32 0.45

NCL-126 Avg. All Data 0.61 0.65 0.64 0.76 0.69 0.68 0.75 0.74
9-fold cv 0.57 0.60 0.54 0.68 0.67 0.65 0.72 0.71

Indiv. All Data 0.44 0.46 0.51 0.57 0.46 0.47 0.51 0.56
9-fold cv 0.38 0.40 0.42 0.49 0.41 0.42 0.45 0.50

NCL-32 Avg. All Data 0.38 0.44 0.51 0.69 0.54 0.60 0.68 0.71
8-fold cv 0.16 0.15 0.22 0.30 0.33 0.39 0.44 0.49

Indiv. All Data 0.38 0.43 0.54 0.60 0.42 0.47 0.56 0.61
8-fold cv 0.21 0.22 0.27 0.30 0.26 0.29 0.34 0.39
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models than CCLS models, for cylindrical models than Cartesian
models, and for models that included 1st and 2nd degree factors
than for models that only included 1st degree factors. The best
model was the 2nd-harmonic Lch model (‘‘LabC Cyl2”), which
accounted for 76% of the variance. For the NCL-126 dataset there
was less differentiation among the models, but LabC Cyl2 was
among the best and it accounted for similar variance (74%) as it
did for the BCP-32 dataset. Differences between the BCP-32 and
NCL-126 datasets are discussed in Section 3.4.

3.2. Predicting average color preferences with cross-validation

3.2.1. Calculating summary R2

The R2 values for the fits to the average data using k-fold cross-
validated data (Fig. 3A and C) were obtained as follows. As
described in Section 2.3, k-fold cross-validation involves running
the model k times for each of k folds, which produces model pre-
dictions for the untrained colors within each fold. If k = 8, that
results in eight R2 values. This procedure was repeated 10 times
for each model resulting in 80 R2 values for each model. The R2

for cross-validation plots in Fig. 3A and C depict the average of
these values for each model.

3.2.2. Model results
The results of the cross-validated models illustrate the models’

ability to predict preferences for colors that were not in the train-
ing set used to set the parameters for the models. Although here
we had measurements of people’s preferences for the untrained
colors that we could use to assess how well the model predictions
fit the data, this method can be used to predict preferences for
untrained colors where no color preference measurements have
been made. The pattern of model fits using cross-validation was
strongly correlated with the pattern of model fits for all data
within the BCP-32 dataset (r(6) = 0.96, p < 0.001) and the
NCL-126 dataset (r(6) = 0.92, p < 0.01). The model fits using
cross-validation were generally lower than the model fits for All
Data (BCP-32: t(7) = 15.52, p < 0.001, d = 5.51; NCL-126: t(7) =
4.77, p = 0.002, d = 1.69), which is to be expected from the cross-
validation procedure (see Section 2.3). For the BCP-32 dataset,
the LabC Cyl2 model had the strongest predictive ability, account-
ing for 59% of the variance. For the NCL-126 dataset there was less
differentiation among the models, but LabC Cyl2 was among the
best, accounting for 71% of the variance.

3.3. Describing individual preferences for all the colors

3.3.1. Calculating summary R2

We computed the R2 values for individual fits for all the data
(Fig. 3B and D) by first computing the R2 for each individual and
then averaging the R2 values across individuals. This is a standard
procedure for evaluating color preference model fits for individuals
(Ling & Hurlbert, 2007; Schloss et al., 2015).
3.3.2. Model results
Ling and Hurlbert’s (2007) CCLS Cart model accounted for an

average of 38% of the variance in the BCP-32 dataset and 44% in
the NCL-126 dataset. Similar to the average data, LabC models gen-
erally accounted for more variance than CCLS models, and models
with 1st and 2nd degree factors accounted for more variance than
models with only 1st degree factors. LabC Cyl2 was the model that
accounted for the most amount of variance in individuals’ prefer-
ences in BCP-32 dataset. There was less differentiation among
the models for the NCL-126 dataset, but LabC Cyl2 was among
the best, accounting for 56% of the variance. We conduct more
thorough analyses of the individual models when cross-
validation was used (Section 3.4) because cross-validation makes
it possible to directly compare models with different numbers of
factors without giving unfair advantage to models with more
factors.
3.4. Evaluating model performance for cross-validated individual
model fits

3.4.1. Calculating summary R2

We obtained the R2 values for the fits of cross-validated models
for individual subjects by conducting the procedure described for
the average data (Section 3.2) but for each individual, and then
averaging the R2 values across individuals (Fig. 3B and D).
3.4.2. Model results
These R2 values represent the degree to which the model can

predict individuals’ preferences for colors that were not used to
train the models. CCLS Cart was the model that accounted for the
least amount of variance in the BCP-32 (21% variance) and NCL-
126 datasets (38% variance). LabC Cyl2 was the model that
accounted for the most amount of variance in the BCP-32 dataset
(45% variance) and the NCL-126 dataset (50% variance). Below
we conducted a systematic analysis to understand which features
make models more/less effective at accounting for variance in color
preferences.

We evaluated the performance of the models for the BCP-32
and NCL-126 datasets by conducting a mixed design ANOVA on
the amount of variance accounted for in the individual partici-
pants’ color preferences. There were three within-subject factors:
2 Color Spaces (CCLS, LabC) � 2 Coordinate Systems (Cartesian,
cylindrical) � 2 Factor Degrees (1st degree, 2nd degree). There
was one between-subjects factor: dataset (BCP-32 vs. NCL-126).
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The ANOVA indicated that all four factors influenced the model
fits. A main effect of Color Space indicated that LabC models (con-
structed from factors in higher-level CIELAB color space) fit the
color preference data better than CCLS models (constructed from
factors in lower-level cone-contrast space) (F(1,86) = 75.62,
p < 0.001, g2

p = 0.47). A main effect of Coordinate System indicated
that models using cylindrical coordinate systems fit the data better
than models using Cartesian coordinates (F(1,86) = 17.82,
p < 0.001, g2

p = 0.17). A main effect of Factor Degree (F(1,86)

= 71.66, p < 0.001, g2
p = 0.46) indicated that models including 2nd

degree factors in addition to 1st degree factors were better than
models including 1st order factors alone. The better fit of the 2nd
order models indicate that hue preference components are not
only opponent—people can like (and dislike) both colors at oppo-
site ends of hue-opponent axis dimensions. An interaction
between Color Space and Degree (F(1,86) = 9.34, p = 0.003,
g2
p = 0.10) indicated that the extent to which the 2nd degree mod-

els were better than the 1st degree models was greater within LabC
models than within CCLS models.

Evaluating the between subjects factor of dataset, the overall fit
was greater for the NCL-126 dataset than the BCP-32 dataset (F
(1,86) = 12.82, p < 0.001, g2

p = 0.13). The pattern of model fits was
also slightly different across the two datasets, as supported by a
2-way interaction between Color Space and Dataset (F(1,86)
= 13.79, p < 0.001, g2

p = 0.14) and a 3-way interaction between
Color Space, Coordinate System and Dataset (F(1,86) = 8.31,
p < 0.01, g2

p = 0.09).
There were several differences between the datasets that could

have caused these results, including participant sample (UK vs. US)
number of colors (126 vs. 32), and range of colors. Although both
sets of color sample the hue circle similarly, apart from larger gaps
in the BCP-32 set in the bluish-purple and magenta hue range, the
NCL-126 set includes colors at lower lightness and chroma levels
not in the BCP-32 set and the BCP-32 set includes colors at high
chroma not in the NCL-126 set (see Fig. 4A).
10 The a* and b* coordinates for the BCP-32 colors are scaled differently from those in
Fig. 1 of Palmer and Schloss (2010) because we used a white point of 116 cd/m2 and
they used the background luminance (19.26 cd/m2).
To understand the effects of these differences between datasets
we sub-sampled the NCL-126 dataset to isolate the colors that
were most similar to the BCP-32 colors, resulting in more equiva-
lent and comparable data sets. We first calculated the distance
(DE) between each BCP-32 color and each NCL-126 color in CIELAB
space. We then determined which NCL-126 color best matched
each of the BCP-32 colors (minimizing DE). Three of the 32 colors
resulted in duplicate picks, so we chose the second-closest match
those cases. We separately verified that this matching procedure
resulted in the lowest possible overall DE over the entire set of
matches, using an optimization routine that examined all possible
matches. We refer to the new sub-sampled set as the NCL-32 colors
(see Fig. 4B and Table S10 in the Supplementary Material).

The model results for the NCL-32 dataset are shown in Fig. 3E
(fits with average data) and Fig. 3F (fits with individual data). To
compare the model fits to those for BCP-32 dataset we conducted
the same mixed design ANOVA as above, but this time including
the NCL-32 dataset instead of the NCL-126 dataset. By matching
the datasets we eliminated the main effect of dataset (F(1,86)
= 1.07, p = 0.31, g2

p = 0.01) and the 3-way interaction between Color
Space, Coordinate System and Dataset (F < 1). This suggests that by
equating the number of colors and largely matching their appear-
ance we were able to substantially reduce the difference in model
fits between the two datasets. Thus, the overall difference between
fits for the NCL-126 and BCP-32 datasets were likely due to the dif-
ference in number of colors and/or sampling of colors within these
datasets, not due to participants being from different populations
(UK vs. US). However, the interaction between Color Space and
Dataset still holds (F(1,86) = 15.92, p < 0.001, g2

p = 0.17): the extent
to which the LabC model fit the data better than the CCLS model
was greater for the BCP-32 dataset than the NCL-32 dataset. The
main effects of Color Space, Coordinate System, and Degree
reported above also still hold (F(1,86) = 60.61, 42.29, 78.37,
p < 0.001, 0.001, 0.001, g2

p = 0.41, 0.33, 0.48, respectively), but the
interaction between Color Space and Factor Degree was eliminated
(F(1,86) = 3.12, p = 0.082, g2

p = 0.04).
To summarize these analyses, models that best fit the color

preference data were constructed from a higher-level color space
(CIELAB) using a cylindrical coordinate system (Lch), with 1st
and 2nd degree factors. The most effective model for both the
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NCL-32 and BCP-32 datasets in the cross-validation test was the
2nd-harmonic Lch model (labeled ‘‘LabC Cyl2” for brevity in Figs. 3
and 4, and Table 2). We note that this best-fitting model signifi-
cantly improves on the performance of previous models such as
Ling and Hurlbert’s (2007) extended cone-contrast model (labeled
‘‘CCLS Cart” above) and that it differs from that model both in its
underlying color space (physiological cone-contrast vs. standard-
ized CIELAB) and in its use of cylindrical vs. Cartesian
coordinates.11 In the following section we further explore the 2nd-
harmonic Lch model to understand which aspects of the color pref-
erence data it fits and where it falls short, and how the parameters of
the model can be used to parsimoniously describe patterns in aver-
age and individual participants’ color preferences.

3.5. Illustrating model predictions

The color preference data we used for evaluating the models
described above are illustrated in Fig. 5A (from Schloss et al.,
2015) and Fig. 5B (from Ling & Hurlbert, 2007). Fig. 5B plots only
the subset of the NCL-126 data that contained all 10 hues within
each value/chroma level. We chose this subset because it provided
a way to demonstrate hue preference functions at each saturation
and lightness level without having missing hues within the func-
tion. Both sets of color preferences show a typical profile with a
peak at blue, a trough around yellow-green, with an especially pro-
nounced dislike for dark yellow. In the NCL dataset, it is also appar-
ent that the darker and less saturated blues are less preferred than
the light saturated blues, consistent with the overall reduction in
preference as lightness and saturation are decreased. This trend
is not apparent in the BCP dataset, but it contains far fewer blues
overall and no colors at relatively low lightness and saturation in
comparison with the NCL dataset. Note that in the BCP dataset,
the colors in one ‘‘cut” are not all at the same value and chroma
level, so there is not a direct correspondence with the curves in
the NCL dataset, which have constant value and chroma within
each curve.

Fig. 5C and 5D show the predicted color preferences using the
LabC Cyl2 representation for BCP-32 and NCL-126, respectively.
To obtain the predictions plotted here, we first fit the model to
each participant’s color preference data, calculated the individual
predictions from the model weights, and then calculated the mean
of those predictions. Although only a subset of the NCL-126 data
are shown (those that contained colors at each hue within the
value/chroma level), the model fits were conducted on the full
datasets for 126 colors. Both sets of predictions depicted in Fig. 5
are strongly correlated with the color preference data on which
they were based (r = 0.87, p < 0.001 for both datasets). The models
capture a broad peak around blues and cyans, a trough around yel-
lows, and an overall preference for saturated colors.

Fig. 4E and 4F show the differences between the color prefer-
ence data and the model predictions for each participant, averaged
over participants. The prediction errors show that the best model
still does not capture the extreme dip in preference for dark rela-
tively saturated yellow, the small peak of preference at light, satu-
rated yellow-oranges and the reduced preference for less
saturated, darker blues. The deviations are largely due to the inter-
actions between hue, chroma and lightness that cannot be cap-
tured by our additive model. For example, in the BCP-32 dataset
(Fig. 5A), the model captures the similar hue preference profile
for the saturated, light, and muted colors, and the overall elevated
preference for the saturated colors (Fig. 5C). However, as shown in
the residuals (Fig. 5E), the model does not capture deviations from
11 CCLS Cart, which is Hurlbert and Ling’s (2007) extended cone-contrast model, is
the same as the cylindrical model for stimuli that vary only in hue because the cone-
contrast components are the sine and cosine functions in a circle of unit radius.
this profile for the dark colors—it fails to predict how much people
disliked dark yellow and like dark red and dark green (Palmer &
Schloss, 2010). For the NCL dataset (Fig. 5B), the model again cap-
tures the general hue preference profile but does not account for
deviations at different value/chroma levels (Fig. 5D). As shown in
the residuals (Fig. 5F), it under-predicts preference for lighter
higher-chroma cool hues and over-predicts preference for darker,
lower-chroma cool hues. It also does not predict how much people
dislike the darkish yellow (V/C of 5/6) that is similar to the BCP
Dark Yellow. Future research will be necessary to capture these
complexities in the color preference data.

A feature of the Cyl2 representation is that the preference pro-
files may be interpreted in terms of dominant hue angles and dom-
inant hue axes, as described in Section 2.2 (Figs. 1 and 2). Fig. 6
shows the dominant hue angles (1st harmonic) and dominant axes
(2nd harmonic) for each participant in both datasets.

For the 1st harmonic, each radial segment in Fig. 6 has an angle
corresponding to the dominant hue for that individual and a radius
corresponding to its weighting (relative importance of the domi-
nant hue in describing the color preferences of that individual).
The opposite of the dominant hue angle segment (not depicted)
represents the least liked hue. For both datasets, the 1st harmonic
weights confirm the weighting toward the blue side of the blue-
yellow axis seen previously, meaning that people generally prefer
bluish hues most and yellowish hues least.

For the 2nd harmonic, segments correspond to two opposing
hues with equal preference strengths (each radial segment extends
an equal length in opposite directions). The angle of the segment
corresponds to the dominant opposing hue pair and the radius cor-
responds to the strength in preference for the opposing hues (i.e.,
amplitude of the harmonic). For both datasets, the 2nd harmonic
reveals strongest weighting along an orangish-red to bluish-
green axis, indicating that people tend to like both orangish-reds
and bluish-greens. This pattern also implies that the troughs of
the 2nd harmonics are around a greenish-yellow to bluish-purple
axis. That means that people tend to dislike both greenish-
yellows and bluish-purples. Had there been no tendency to like
(or dislike) opposing hues, weights would be near zero on the
2nd harmonic, resulting in very small line segments in the 2nd har-
monic plots in Fig. 6, which is not the case.12

The combination of a dominant blue 1st harmonic with a less
pronounced reddish-orange to greenish-blue 2nd harmonic pro-
duces the typical hue preference function that has long been doc-
umented in the literature (Guilford & Smith, 1959): a broad peak in
preference around blues and greens, moderate preference for reds,
and a trough in preference around yellows, as shown in Fig. 2.
4. General discussion

Color space based models are powerful tools for describing and
predicting color preferences because they provide a concise way of
characterizing complex patterns of data over large sets of colors.
For example, the 2nd-harmonic Lch (LabC Cyl2) model describes
preferences for 126 colors in the NCL-126 data using six parame-
ters and an additive constant. Once the parameters have been esti-
mated for a particular individual or group, it is possible to predict
preference for any color that can be specified within the space. The
anticipated accuracy of the prediction can be estimated from the
model fits using cross-validation.

We set out to determine which color space models most effec-
tively describe and predict color preferences and found that the
12 Note that there is no a priori relationship enforced by the model between the
directions of the dominant 1st and 2nd harmonic. The dominant peaks of the 1st and
2nd harmonic curves emerge independently from the data for each individual.
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2nd-harmonic Lch model was most effective. The model was con-
structed from CIELAB space in cylindrical coordinates space includ-
ing first and second harmonics of hue. It accounted for 76% of the
variance average preferences in the BCP-32 dataset and 74% of the
variance in average preferences in the NCL-126 dataset. When used
to fit individual subjects’ color preferences and averaging over
those individual fits, the model accounted for 66% of the variance
for the BCP-32 dataset and 56% for the NCL-126 dataset. These fits
are substantially greater than the fits from models that were pre-
viously reported in the literature (see Fig. 3 and Table 2).

Some of the improvement in the fit over previous models comes
from the use of cylindrical coordinates, as verified by the main
effect of coordinate system in the comparison of model fits for
the cross-validated data. This coordinate system provides a way
to encode hue, chroma, and lightness as separate, independent fac-
tors, eliminating the conceptual redundancy in previous Cartesian
models (Hurlbert & Ling, 2007; Ling & Hurlbert, 2007; Palmer &
Schloss, 2010), which coupled saturation with hue. The improve-
ment with cylindrical coordinates is visible for both color spaces,
although generally weaker for the cone-contrast models. The addi-
tion of second harmonic components improves the fit, still further,
by enabling double peaks in preference to emerge as a function of
hue. This effect is stronger for the LabC models than for the CCLS
models, evidenced by the interaction between color space and fac-
tor degree in the model fits for the BCP-32 and NCL-126 datasets.

It is noteworthy that the coordinate system that best captured
variations in color preference in the models that we tested also
corresponds to the dimensions that characterize human perceptual
experience (hue, saturation/chroma, and lightness). Although the
evidence for explicit neural encoding of hue, saturation, and light-
ness, and their interactions, is still lacking, recent studies in non-
human primates indicate that color encoding at higher stages of
visual processing differs from early stages in no longer represent-
ing colors by linear responses tuned to cardinal axes. Instead, neu-
ral activity in higher areas shows narrow tuning to hue, and
represents hue differences similarly to distances in the perceptu-
ally uniform space CIELUV (Bohon et al., 2016).

The question remains why the 2nd-harmonic Lch model fits the
data overall better than the 2nd-harmonic cone-contrast model,
given that both have enhancements provided by decoupling hue
and saturation, and by including higher-order functions of hue.
The answer must lie in the structure of the underlying color spaces
(i.e. cone-contrast and CIELAB space). Fig. 7 illustrates differences
between the two spaces. Fig. 7A shows the coordinates of a uni-
form grid of colors in the chromaticity plane of L⁄ = 80 and
Fig. 7B shows those same coordinates transformed into cone-
contrast space. Note that it is not possible to display colors at all
chromaticity values in Fig. 7A at L⁄ = 80; this is a schematic dia-
gram to illustrate the mathematical relation between CIELAB and
cone-contrast space. Fig. 7C and 7D show what a circle in CIELAB
space maps to in cone-contrast space. It is apparent that the circle
is compressed for negative values of S � LM and expanded for pos-
itive values of S � LM. Differences between colors are also more
compressed on the negative side of LM compared to the positive
side. Fig. 7E and 7F illustrate differences between the two spaces
in encoding chromaticity at different lightness levels. As the light-
ness level is reduced in cone-contrast space, the chromaticity plane
shrinks, but there is no corresponding shrinking in CIELAB space.

The nonlinear nature of the transformation between the spaces
results in different model predictions. For example, consider two
pairs of colors: two greens far from the origin and two blues closer
to the origin, with the same CIELAB chroma difference between the
colors in each pair. Because the compression of chroma increases
with greater distance from the origin, the difference in CIELAB
chroma between the two greens would transform to a smaller rel-
ative difference in cone-contrast space, in comparison with the
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chroma difference between the blues. Therefore, a model based on
cone-contrast space would predict a smaller effect of chroma for
the former. It is noteworthy that the part of color space where
the BCP-32 and NCL-32 datasets disagree most is in the saturated
green-yellow-orange region. This also happens to be the area
where the conversion from CIELAB to cone-contrast causes the
most compression. This effect may further contribute to disagree-
ments in fits between both models (Color Space x Dataset interac-
tion described in Section 3.4).

The 2nd-harmonic Lch model will be useful in future work for
characterizing and analyzing patterns of color preference data.
For example, it may be used to track how color preferences change
along particular dimensions over time, such as the seasonal varia-
tions in color preferences previously reported by (Schloss, Nelson,
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Parker, Heck, & Palmer, in press). It may also be used to
characterize compactly the differences in color preference between
different populations, for example, between typically and atypi-
cally developing individuals (Cranwell, 2016; Hurlbert, Loveridge,
Ling, Kourkoulou, & Leekam, 2011). A caveat for such applications
is that the model descriptions are only as good as the model fits—a
model that is a poor fit to the data will not be successful at describ-
ing the data. One important aspect of the 2nd-harmonic Lch model
to note is that the dominant hue outputs are angular in nature.
Therefore, to analyze the outputs (e.g., compare dominant hue
angles across groups) standard statistical techniques, such as t-
tests, would need to be replaced by their circular equivalents
(e.g. the Watson-Williams test (Zar, 2009, Section 27.4)).

Although we have focused on modeling color preferences in the
present study, the 2nd-harmonic Lch model can be used to
describe and predict any kind of judgments about colors provided
the criteria outlined in the introduction are met. For example, the
model might be used to characterize patterns of color-emotion
associations such as the amount of happiness, anger, and calmness
associated with colors (e.g., Dael, Perseguers, Marchand, Antonietti,
& Mohr, 2016; Palmer, Schloss, Xu, & Prado-León, 2013; Valdez &
Mehrabian, 1994).

For future work that uses the 2nd-harmonic Lch model to
describe and predict patterns of color preferences, it will not be
necessary to use the k-fold cross-validation procedure imple-
mented here. We used k-fold cross-validation as a means to fairly
compare different candidate models and to select the best one. In
particular, we used it across colors to ensure that the fits produced
were not overfitting the data. Any of the models described in this
paper can be applied directly (without using k-fold cross-
validation) to new data, for example to predict a subject’s prefer-
ence for an unseen color given their preference profile for a known
set of colors. However, it would be beneficial to use k-fold cross-
validation in future studies aimed at model comparison, especially
when those models have different numbers of parameters.

An open question that would warrant further model compar-
isons concerns the type of model that will best capture interactions
in color preference data. As described in Section 3.5, there are well-
documented interactions between dimensions of color in color
preference judgments, particularly between hue and lightness.
The present models additively combine weights along the different
factors without accounting for such interactions, and the 2nd-
harmonic Lch model might further be improved by building ways
to model these more complex patterns.

Although color space models are extremely useful for describ-
ing and predicting color preferences, they do not provide explana-
tory accounts for color preferences. That is, they do not explain
how color preferences are formed, why they differ between typical
trichromatic individuals, and why they change over time. However,
by providing a parsimonious way of describing color preferences
they may elucidate key patterns in color preferences that effective
theories of color preferences seek to explain.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.visres.2017.07.
001.
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