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Figure 1: Color-concept association distributions for concept pairs with large, medium, and small distribution differences, resulting in
high, medium, and low capacities for semantic discriminability, respectively (terms defined in Section 3). Color-concept association
ratings were collected in Experiment 1 for the UW-71 colors (colored stripes in the plots, sorted by CIE LCh hue angle).

Abstract— People’s associations between colors and concepts influence their ability to interpret the meanings of colors in information
visualizations. Previous work has suggested such effects are limited to concepts that have strong, specific associations with colors.
However, although a concept may not be strongly associated with any colors, its mapping can be disambiguated in the context of other
concepts in an encoding system. We articulate this view in semantic discriminability theory, a general framework for understanding
conditions determining when people can infer meaning from perceptual features. Semantic discriminability is the degree to which
observers can infer a unique mapping between visual features and concepts. Semantic discriminability theory posits that the capacity
for semantic discriminability for a set of concepts is constrained by the difference between the feature-concept association distributions
across the concepts in the set. We define formal properties of this theory and test its implications in two experiments. The results show
that the capacity to produce semantically discriminable colors for sets of concepts was indeed constrained by the statistical distance
between color-concept association distributions (Experiment 1). Moreover, people could interpret meanings of colors in bar graphs
insofar as the colors were semantically discriminable, even for concepts previously considered “non-colorable” (Experiment 2). The

results suggest that colors are more robust for visual communication than previously thought.

Index Terms—Visual Reasoning, Information Visualization, Visual Communication, Visual Encoding, Color Cognition

1 INTRODUCTION

Bananas are shades of yellow, blueberries are shades of blue, and can-
taloupes are shades of orange. It is well-established that color semantics
influences people’s ability to interpret information visualizations when
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those visualizations represent concepts that have specific, strongly as-
sociated colors (e.g., fruits). Such visualizations are easier to interpret
if concepts are encoded with strongly associated colors (e.g., bananas
encoded with yellow, not blue) [20,31]. But, how often do real-world
visualizations really depict information about fruit, or other concepts
with specific, strongly associated colors? If color semantics mainly
influences interpretability for visualizations of concepts with specific,
strongly associated colors (as previously suggested [20, 33]), then sce-
narios in which color semantics matters would be severely limited.

The present study suggests people’s ability to infer meaning from
colors is more robust than previously thought. Conditions arise in
which people can interpret meanings of colors for concepts previously
considered “non-colorable”. Specifically this when the colors are se-
mantically discriminable. Semantic discriminability for colors is the
ability to infer unique mappings between colors and concepts based on
colors and concepts alone (i.e., without using a legend) [31]. This is
distinct from semantic interpretability, which is the ability to interpret
the correct mapping between colors and concepts, as specified in an
encoding system (for further discussion of this distinction, see [31] and
Supplementary Material Section S.7 in the present paper). The key



question is, what determines whether it is possible to select semantically
discriminable colors for a set of concepts?

We address this question in semantic discriminability theory, a new
theory on constraints for generating semantically discriminable per-
ceptual features for encoding systems that map perceptual features to
concepts. We tested two hypotheses that arise from the theory. First,
the capacity to create semantically discriminable color palettes for a
set of concepts depends on the difference in color-concept associa-
tion distributions between those concepts, independent of properties
of the concepts in isolation (Experiment 1). Second, people can ac-
curately interpret mappings between colors and concepts for concepts
previously considered “non-colorable,” to the extent that the colors
are semantically discriminable (Experiment 2). We focus on color in
this study, but present the theory in terms of perceptual features more
generally because of its potential to extend to other types of visual
features (e.g., shape, orientation, visual texture) and features in other
perceptual modalities (e.g., sound, odor, touch).

Contributions. This paper makes the following contributions:
(1) We define semantic discriminability theory (Section 3) and test
hypotheses motivated by the theory in Experiments 1 and 2 (Sections
4-5), and (2) We define a new metric for operationalizing distribution
difference between sets of more than two concepts (Section 3.2) and
show that it predicts capacity for semantic discriminability (Section 4).

2 BACKGROUND

Color is a strong cue for signaling meaning in nature and some ar-
gue that color vision evolved for the purpose of visual communica-
tion [7,8,12,14,39]. Historically, discussions on the role of color seman-
tics in information visualization have tended to focus on few cases of
typical associations (e.g., red for hot, green for grass) [5,28,34]. More
recent work has sought to understand the potential and limitations of
using color to communicate meaning in visualizations [1,2,20,31-33].
The semantics of color in visualizations operates on two main levels:
meaning of a color palette as a whole [1, 2, 15] and meaning of the
individual colors in a palette [20,31-33]. We focus on meanings of
individual colors because that is central to the present work. People
have expectations about how colors will map onto concepts, and visual-
izations that violate those expectations are harder to interpret, even if
there is a legend [20, 30, 35]. Thus, understanding these expectations is
important for optimizing palette design for visual communication.

2.1

Color-concept associations represent the degree to which individual
colors are associated with individual concepts. Color-concept asso-
ciations can be quantified using various methods, including human
judgments [16,17,25,27,31,32,38], image statistics [20-22,27,33],
and natural language corpora [13,33]. Some approaches focused on
identifying the strongest, or strongest few colors associated with a
concept [11,13,33], but color-concept associations can be treated as
a continuous property over all possible colors in a perceptual color
space [20-22,27,29]. When quantifying color-concept associations
over all of color space, researchers typically bin or sub-sample parts of
the space to make measurements computationally tractable. An assump-
tion is that the space is continuous, so nearby colors will have similar
associations. Figure 1 shows examples of color-concept associations
for colors systematically sampled over CIELAB space (see Experiment
1), plotted over one dimension (sorted by hue angle and chroma with
achromatics at the beginning of the list). Perceptual color spaces are
three-dimensional so this representation does not necessarily position
perceptually similar colors in close proximity [41], but it does high-
light how some concepts, like peach and celery, have specific, strongly
associated colors, whereas other concepts, like driving and comfort,
are more uniform (Figure 1). We refer to this ‘peakiness’ property as
specificity of the color-concept association distributions.!

Color-concept associations

ISpecificity is similar to color diagnosticity [37], but color diagnosticity
concerns whether a concept has a single strongly associated color [37], and
specificity concerns the degree to which a concept is associated with some colors
more than others in a color-concept association distribution.

Questions remain concerning how color concept-associations are
formed, but many have suggested that they are learned through experi-
ences [10, 16,27,38,40] and may be continually updated through each
new experience in the world [29]. Some color-concept associations
are shared cross-culturally, and others are subject to cultural differ-
ences [16,17,38]. We will consider the role of cultural differences with
respect to the present work in the General Discussion.

Color-concept associations contribute to people’s expectations about
the meanings of colors in information visualizations [20,31,32], called
inferred mappings. However, associations and inferred mappings are
not the same, and sometimes they conflict [32]. We explain this point
in Section 2.3 on assignment inference.

2.2 Colorabilty scores

Some have suggested that the effectiveness of colors for encoding mean-
ing is limited to concepts that have strong associations with particular
colors [18,20,33]. This idea is explained by invoking colorability
scores, which broadly measure how strongly individual concepts can be
mapped to specific colors. Generally, concepts with specific, strongly
associated colors (‘banana’) are thought to be colorable, whereas more
abstract concepts, such as ‘comfort’ or ‘leisure’, that lack such strongly
associated colors, have been called non-colorable.

Different methods have been used to define colorability. Lin et
al. [20] quantified colorability by having participants assign colors
to concepts and rate the strength of the assignment. The mean of
these ratings over all colors for a concept was used to generate a col-
orability score for that concept. They found that participants were
better at interpreting bar charts when palettes were optimized for color
semantics compared to when palettes had the default Tableau color or-
dering, but this benefit was mostly limited to highly colorable concepts.
Setlur and Stone [33] quantified colorability with an automated method,
using Google N-grams to determine how frequently a concept word
co-occurred with basic color terms [3] in linguistic corpora. They then
excluded concepts they found to be non-colorable when developing
methods to optimize palette design.

These prior studies highlighted the importance of considering color
semantics in palette design. However, our work suggests that restricting
notions of colorability to concepts in isolation may have led to underes-
timating people’s ability to infer meaning from colors in visualizations.

2.3 Assignment inference

Evidence suggests that people’s inferences about the meanings of col-
ors in encoding systems of visualizations do not merely depend on
color-concept associations in isolation. We illustrate this point with an
example from Schloss et al. [32]. Participants saw pairs of unlabeled
bins and were asked to choose which bin was for the target concept
written at the top of the screen. Figure 2 shows two examples when
trash was the target concept. The other concept, not pictured here but
judged on other trials, was paper. To the left of the example trials
are bipartite graphs, which use line thickness to represent the associa-
tion strength between each concept (trash, T, and paper, P) and each
color in the corresponding trial. An easy way to approach this task
would be to choose the color that is most strongly associated with trash
within each trial (local assignment). Alternatively, participants could
choose the color that results in maximizing association strengths of all
color-concept pairings across trials (global assignment).

In the top row of Figure 2, these two approaches lead to the same
outcome. Locally, trash is more strongly associated with dark yellow
(Y) than white (W). Globally, the assignment trash-yellow/paper-white
has a larger overall association strength than trash-white/paper-yellow.
Not surprisingly, participants inferred trash is mapped to dark yellow.
However, in the bottom row, the two approaches lead to opposite
outcomes. Locally, trash is more associated with white than purple
(Pu), but globally the assignment trash-purple/paper-white has a larger
overall association strength (greater total thickness of edges) than trash-
white/paper-purple. Participants inferred that trash maps to purple,
even though white was a more strongly associated alternative. Each
trial was independent, so participants need not account for paper on
trials for trash, but they did so nonetheless. This example highlights the
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Figure 2: Distinction between color-concept associations and inferred
mappings (figure based on [32]). Left: Bipartite graphs show color-
concept association strengths for concepts trash (T) and paper (P) with
colors dark yellow (Y), white (W), and purple (Pu) (thicker edges
connecting concepts and colors indicate stronger associations). Right:
example trials where participants infer which color maps to trash.

important distinction between color-concept associations for a single
color and concept, and inferred mappings between a color and concept
in the context of an encoding system.

Schloss et al. [32] called this process of inferring mappings between
colors and concepts assignment inference because it is analogous to an
assignment problem in optimization. In assignment problems, every
possible pairing of items in one category (e.g., colors) i and another
category (e.g., concepts) j is given a numerical merit score m; ;. Here,
let’s assume that larger scores indicate a more desirable pairing, but
that is not always true (e.g., to optimize delivery route efficiency, merit
might be delivery time and smaller scores would be better). Solving an
assignment problem means finding the pairing of items that maximizes
(or minimizes) the sum of the merit scores of all chosen pairs [6,19,23].

Although assignment inference is analogous to assignment prob-
lems, they are not the same. Assignment problems have deterministic
results, whereas assignment inference is stochastic—inferred map-
pings can vary among individuals and even within individuals over
time. This stochasticity can be explained in terms of noise in people’s
color-concept associations affecting the outcome of assignments in
assignment inference, depending on whether assignments are robust or
fragile [31]. In robust assignments, adding noise to the system (e.g.,
perturbing the color-concept association strengths) has no effect on
the outcome, but in fragile assignments adding noise can change the
outcome of the assignment.

The robustness of an assignment in assignment inference can be
understood as semantic discriminability—the ability for people to infer
a unique mapping between colors and concepts [31]. Evidence sug-
gests that semantic discriminability predicts people’s ability to interpret
colors in encoding systems, independent of that predicted by perceptual
discriminability and color-concept associations in isolation [31]. We de-
scribe ways of operationalizing semantic discriminability in Section 3.2
as they pertain to the present study.

So far, we focused on encoding systems with two concepts and
colors, and implied that merit m;; in assignment inference is color-
concept association strength (Figure 2). However, there are other
possible ways to define merit, especially when there are more than
two colors and concepts, as in the present study. Schloss et al. [32]
sought to understand which merit people use in assignment inference
to study (1) how humans infer meaning from colors, and (2) how to
design palettes that match people’s expectations, making palettes more
interpretable. To approach this goal, they created two definitions of
merit. The isolated merit function simply uses association strengths
between items i and j, m;; := a;j. The balanced merit function is
defined as

mij = ajj ngﬁaiki ey
The balanced merit score for a given color-concept pair is the associa-
tion strength for that pair, minus the association strength between that
color and the next most strongly associated concept. In order for m;;
to be large, color i should be strongly associated with concept j and
weakly associated with all other concepts. (Note: in the case of two
concepts and colors these two definitions reduce to the same outcome.)

Next, they generated color palettes using an assignment problem
under each definition, with human color-concept association ratings
as the input. Finally, they presented different participants with those
palettes in the form of six unlabeled colored bins. Participants inferred
which bin was for each of six objects: paper, plastic, trash, metal,
compost, and glass. Responses were scored as “correct” interpretations
if they matched the encoded mapping. Encoded mappings can be
produced in different ways, including by designers, software defaults,
or optimization algorithms [20,31,32]. Here, they were determined by
the optimal assignments in assignment problems used to generate the
palettes. The logic was that participants would be better at interpreting
palettes generated using a merit function that more closely matched
merit in assignment inference. Performance was better for the palette
generated using the balanced merit function, which suggests that this
was the function that better captured merit in assignment inference.
Thus, we use balanced merit in the present study.

Balanced merit can lead to unexpected assignments. For example,
the bin for plastic was assigned a red color, even though red was weakly
associated with plastic, because that color was more associated with
plastic than with any of the other concepts. Thus, the assignment of
plastic-red was interpretable. Given that weakly associated colors
can prove useful when designing encoding systems, approaches that
focus only on the top associates may be limited [11]. It is important to
quantify associations between concepts and a large range of colors, not
just the top few associates, when optimizing palette design [27].

3 SEMANTIC DISCRIMINABILITY THEORY

Semantic discriminability theory characterizes the ability to generate
semantically discriminable perceptual features for encoding a set of
concepts. We begin with some key definitions.

Concept set: This is the set of all concepts that are represented in
an encoding system. These concepts could refer to any information that
is categorical (e.g., food, weather, activities, places, and animals). We

Feature source: This is the set of all possible instances of a feature
type. Perceptual color spaces (e.g., CIELAB) are well-defined feature
sources for color, as they represent all colors humans can perceive [41].

Feature library: This is a subset of candidate features from the
feature source used in an encoding system. For example, the Tableau 20
colors or UW-58 colors [27] are feature libraries if design is constrained
to those groups of colors. We focus on a feature library defined over
color, but they can be defined over any type of perceptual feature (e.g.,
shapes, sizes, textures). We label features in the feature library using

Feature set: This is a subset of features from the feature library,
selected to encode a concept set. Feature sets can be constructed from
any type of perceptual features (e.g., colors, shapes, sizes) [4]. For
colors, they are called “palettes.” If there are n concepts, then the
feature set should contain 7 features.

3.1

Feature-concept association distributions represent the degree to which
a given concept is associated with each feature in a feature library
(see Figure S.5A. in the Supplementary Material). For color, these are
color-concept association distributions. Feature-concept association
distributions can be described as raw association values over the feature
library (e.g., mean ratings, pixel counts, word counts). In this case, we

Feature-concept association distributions

associations p;( ) as

pi() = Naij for: i 2 f1;:::;NQ: ?2)
k=1%j

The list. P j(l) pj (2) p j(N)' can be interp.reted as a discrete
probability distribution over features in the feature library.

We now define useful properties and operations related to feature-
concept association distributions.



3.1.1 Specificity

Specificity is the degree to which a concept has strong, specific associa-
tions with features over the feature library. For color, specificity refers
to the ‘peakiness’ of a color-concept association distribution. Concepts
can have strong color associations that are concentrated in one part
of color space (e.g., reds for concepts like raspberry) or divided over
different parts of color space (e.g., reds and greens for watermelon) [27].
Thus, we quantify specificity using entropy of the distribution, which
captures how ‘flat’ vs. ‘peaky’ a distribution is, regardless of how many
peaks there are.

Entropy for a feature-concept association distribution is defined as:

N

pj(@)logp;(): ©)
i=1
If all features in the feature library are equally associated with con-
cept j, the distribution p; will be uniform, entropy will be high, and
specificity will be low. If a concept j is strongly associated with some
features and not others, then entropy will be lower and specificity will
be higher. This property of color-concept association distributions
aligns with previous measures of colorability [20,33] (see Figure S.2
in the Supplementary Material).

Mean entropy of a concept set is the mean of the entropy of all
concepts in the set: Hm:= %(Hl + +H),).

HJ' =

3.1.2 Distribution difference

We quantify distribution difference between concepts by comparing
their normalized feature-concept associations.

Total variation (TV) is what we use when comparing two concepts,
say ji and jp. TV is defined as follows.

N
ViD= Al Pl @
i=1
TV ranges between 0 and 1, where TV = 0 means the two distributions
are identical, and TV = 1 means they are disjoint (for each feature i,
either p;, (i) or pj, (i) must be zero).
Generalized total variation (GTV) is a generalization of TV that
we defined for cases when more than two concepts must be compared,

I+ max(p), (D pp (D50 (D) (5)
i=1

In the case where k = 2, GTV reduces to TV. In other words,

GTV(j1;j2) = TV(j1;j2)- For details on the motivation behind our

definition of GTV, see the Supplementary Material, Section S.6.

3.1.8 Structure-agnostic property

The notions of entropy, TV, and GTV are agnostic to intrinsic structure
of the feature source. For example, perceptual color spaces are struc-
tured according to perceptual similarity, but entropy of a color-concept
distribution depends on the fraction of the colors that are highly asso-
ciated with the concept, regardless of perceptual similarity. We chose
structure-agnostic metrics for specificity and distribution difference so
that semantic discriminability theory could readily generalize to feature
sources with less well-defined metric spaces (e.g., shape, texture, odor).

3.2 Semantic discriminability

As described in Section 2.3, semantic discriminability of perceptual
features is the ability to infer a unique mapping between features and
concepts. It is reflected in the degree to which inferred mappings vary
among individuals or within individuals between trials. We model this
variability by treating feature-concept associations as random variables.
Rather than solving an assignment problem using the mean a;; values,
we look at the probability of the likeliest assignment, where probability
is computed with respect to uncertainty in the a;;. We now make this
notion more precise.

Semantic distance is a way to operationalize semantic discrim-
inability in the case where there are n = 2 features and concepts [31].

Figure 3 illustrates an example in which we have concepts {M,W} and
colors {1,2}. The color-concept associations between all possible pairs
distributed with mean x; equal to the corresponding a;; and standard
deviation S = 1:4 x(1 x), which was found to be a good fit to
experimental data [31]. The outcome of the assignment problem is
determined by the quantity Dx :=x; x +x3 x4. The optimal as-
signment is: (M-1 and W-2 if Dx > 0) and (M-2 and W-1 if Dx < 0).
Semantic distance is defined by the equation

DS = jProb(Dx >0) Prob(Dx < 0)j: (©6)

Since the x; are assumed to be normally distributed, so is Dx, and the
probabilities in (6) can be computed analytically:

(0} 1

e (eae
Prob(Dx > 0) = F@ &™) (2+%) A 0)
si+si+si+s?

and Prob(Dx <0) =1 Prob(Dx > 0), where F() is the cumulative
distribution function (cdf) of the standard normal distribution. When DS
is close to 0, Dx has a similar probability of being positive or negative,
so the assignment is fragile. When DS is close to 1, Dx is almost always
positive or almost always negative, so the assignment is robust. This
notion of semantic distance can be used even when the features are not
colors, by replacing the color-concept associations with feature-concept
associations, and adjusting the formula for S as appropriate.

(x 1 + x4) - (xz + xs)
Concept M Concept W Concept M Concept W
Color 1 Color 2 Color 2

/@H

Distribution of Ax = (x + x,) — (x,*+ x,)

Prob
Density

Association Rating

2
=2
]2 Prob(Ax < 0)
S0
se { Prob(Ax > 0)
-2 -1 0 1 2

Figure 3: Diagram from [31] that shows how association ratings be-
tween concepts {M,W} and colors {1,2} produce a distribution for Dx.
Semantic distance is the absolute difference of the area under the curve
to the left and right of zero.

Generalized semantic distance is an extension of semantic dis-
tance to the case where there are n > 2 features and concepts. In this
case, there will be n! (n factorial) possible assignments. We define
generalized semantic distance in a manner analogous to semantic dis-
tance; we label the feature-concept associations between all possible

:;X,2 and assume they are normally distributed random
variables.? In this more complicated scenario, the assignment is not
determined by a simple quantity such as Dx and no formula analogous
to (7) exists to determine the assignment. Instead, we use the following
Monte Carlo approach.

2%, from the distribution of merit scores” and solve
an assignment problem using the sampled merit scores.

2. Repeat step 1 a large number of times and count the number of
times each distinct assignment occurs. Let p be the proportion of
times that the most frequent assignment occurred. Since there are
n! possible assignments, we must have % p L

2Here, we use color-concept association ratings, so we assume the x; are
distributed with the same S used to define semantic distance [31]. In principle,
the distributions of the x; can be changed to suit other cases beyond color.
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Figure 4: Hypothetical color-concept association distributions for concepts A and B, showing how capacity varies with distribution difference
(top row: higher capacity; bottom row: lower capacity). In each column, the distribution for concept A is the same and concept B varies. The
histograms to the right show how distribution difference affects capacity with arrows pointing to maximum semantic distance (DS) for the concept
set. Corresponding bipartite graphs show the color set with maximum semantic distance (this is arbitrary when the distributions are parallel

because semantic distances for all color pairs are equally poor).

3. The generalized semantic distance DS is defined as a linear rescal-
ing of p to ensure that 0 DS 1. The formula is:

(®)

A similar Monte Carlo approach was used in [32] to predict the results
of assignment inference in a recycling task (6 concepts and 6 colors).

Just like semantic distance, generalized semantic distance is a num-
ber between 0 and 1, where a larger number indicates more robust
assignments, and consequently, higher semantic discriminability. We
use the same symbol DS for both notions of distance because in the case
where n = 2, generalized semantic distance is (on average) equal to
semantic distance, and the approximation becomes exact as the number
of samples in step 2 tends to infinity. Conversely, in the limitn ¥ ¥,
we have DS ¥ p and the rescaling in (8) has no effect.

Semantic contrast is similar to generalized semantic distance, ex-
cept it estimates the proportion of times a given color is assigned to the
“optimal” concept (compared to all other assignments). This estimation
is computed using the Monte Carlo method described earlier, with
optimal defined by the solution to an assignment problem using the
balanced merit function computed on feature-concept associations.

For a given concept, the optimal color for that concept may have
higher semantic contrast in one context and lower semantic contrast
in another context, depending on the other colors and concepts in the
encoding system. A concept set that has higher capacity for semantic
discriminability (Section 3.3) should enable higher semantic contrasts
among colors in its optimal palette.

The steps to computing semantic contrast are: (1) Solve an assign-

B
from the distribution of merit scores and solve an assignment problem
using the sampled merit scores. (3) Repeat step 2 a large number of
times and count the proportion of times each feature was assigned to
the same concept as in the optimal assignment This proportion is each
feature’s semantic contrast.

3.3 Capacity for semantic discriminability

Capacity for semantic discriminability is the extent to which it is pos-
sible to produce semantically discriminable features for a given set of
concepts. We operationalized capacity for semantic discriminability
(capacity for short), using max capacity. This is a scalable measure
that returns the semantic distance of the most semantically discrim-
inable feature set for a concept set, given a feature library.

To compute max capacity for a given concept set, we solve an
assignment problem using the balanced merit function (Section 2.3)
over the entire feature library. This yields a feature set. We define max
capacity as the (generalized) semantic distance of this feature set for the
given concept set. High max capacity indicates that the feature library
contains at least one feature set with high semantic discriminability for
the concept set. Low max capacity indicates no such feature set exists
for that concept set, at least given the feature library.

In the case of two concepts, the balanced merit approach for comput-
ing max capacity gives the same result as exhaustively computing the
semantic distance for each pair of colors, then finding the maximum
of those semantic distances. Using balanced merit, though, allows
max capacity to scale easily; it can be efficiently computed for large
concept sets and feature sets. We also explored alternative ways to
operationalize capacity (see Supplementary Material Section S.4).

3.4 The theory

Semantic discriminability theory posits that the capacity to produce
semantically discriminable perceptual features for a set of concepts
depends on the difference in feature-concept association distributions
over a feature library. Briefly, distribution difference predicts capacity,
distinct from the contribution of specificity. This idea differs from previ-
ous approaches, which primarily focused on color-concept associations
for concepts in isolation when evaluating the potential to meaningfully
encode particular concepts using color [20, 33].

Figure 1 shows the distinction between distribution difference and
specificity of color-concept associations, with respect to capacity. It
includes concept sets with large, medium, and small distribution dif-
ferences. Capacity is illustrated with histograms below each concept
set. They show the frequency of color sets across values of semantic
distance (2485 possible 2-color sets from the UW-71 color library),
with an arrow pointing at maximum semantic distance. Concept sets
with large, medium, and small distribution differences result in high,
medium, and low capacity, respectively. Yet, the concepts with medium
capacity (driving and comfort) have far lower specificity than concepts
with low capacity (eggplant and grape). The reason that concepts with
low specificity can result in higher capacity than concepts with high
specificity is that semantic discriminability depends on the difference
in merit of each possible set of feature-concept assignments, not just
isolated feature-concept associations (Section 2.3).

Figure 4 further illustrates this point with hypothetical color-concept
association distributions for 2-concept sets that have higher capacity
(top row) and lower capacity (bottom row). The colored dots on the dis-
tributions indicate the optimal assignment according to balanced merit
(though this is arbitrary when the distributions are parallel because all
assignments are equally poor). Next to each distribution pair is a his-
togram of semantic distances (as in Figure 1) and a bipartite graph for
the colors with maximum semantic distance (thicker edges connecting
colors and concepts indicate greater merit). Semantic distance (DS) is
indicated below the bipartite graphs, and can be visually inspected by
comparing the total merit of the outer edges vs. inner edges and assess-
ing the degree to which one sum is larger. When distribution difference
is high (top row), capacity is high, even if one concept has a uniform
distribution (i.e., no specificity). However, when distribution difference
is lower (bottom row), capacity is lower, even if both concepts have
high specificity.

We chose the particular examples in Figure 1 and Figure 4 to high-
light the dissociation between distribution difference and specificity,
but we systematically tested for effects of these factors on capacity in
Experiment 1.



4 EXPERIMENT 1 Table 1: Full set of concepts in Experiment 1 ( rst four columns of

. . . . concepts were used in Experiment 2).
Experiment 1 tested the hypothesis that capacity for semantic élls- P P )

criminability is predicted by distribution difference, independent of

speci city. We rst collected color-concept association data from Catégory \ Concepts
human participants, and used those data to calculate capacity, disnits peach  cherry grape banana apple
tribution difference, and specicity. We then tested our hypothe-\egetables| corn carrot  eggplantcelery  mushroom

sis on 2-concept sets (Section 4.2.1) and 4-concepts sets (Sectig@tivities | working leisure sleepingdriving eating
4.2.2). Semantic discriminability predicts people’s ability to interpret properties | ef ciency speed safety comfort reliability
palettes in visualizations [31], so our modeling approach for under

standing capacity for semantic discriminability should have implica-

tions for interpretability. The code and data for all experiments is at:

https://github.com/SchlossVRL/sem_disc_theory

4.1 Methods
4.1.1 Participants

185 undergraduates participated for credit in Introductory Psychology
(mean age =18.66, 99 females, 86 males, gender provided through
free-response). All gave informed consent and the UW-Madison IRB
approved the protocol. Color vision was assessed by asking participants
if they had dif culty distinguishing between colors relative to the aver-
age person and if they considered themselves colorblind. Participants
were excluded if they answered yes to either (5 excluded).

4.1.2 Design, Displays, and Procedure

Participants judged the association between each of 71 colors and each
of 20 concepts. The colors were the UW-71 color library, an extension
of the UW-58 colors [31], see Supplementary Material for details and
Table S.1 for CIELAB coordinatesThe concepts were from Lin et
al. [20], including 5 concepts in each of four concept categories (fruits,
vegetables, activities, and properties) (Table 1). Participants were
randomly assigned to one of four categories (fraits 46, vegetables
n= 45, activitiesn = 45, propertiesn = 44). They judged all colors for
all ve concepts within their assigned category (71 color$ concepts
= 355 trials). Trials were presented in a blocked randomized design—
all colors were presented in a random order for a given concept before
starting the next concept, and concept order was also randomized. i
The displays included the concept word centered at the top of tE
screen (font-size: 24 pt, font-family: Lato) and colored square center
below (80 px 80 px). Below the colored square, was a line-mar
slider scale (400 px long), with the left end labeled “not at all” and the,
right end labeled “very much” and the center marked with a vertical line
(3 px wide and 32 px tall). The background was gray (CIE Illluminant
D65, x =.3127,y =.3290, Y 40 cd/mz), so that very dark colors )
(e.g., black) and very light colors (e.g., white) could be seen against fRefable 1 (190 2-concept sets in total), we used the mean color-concept
background. Data were recorded in pixel units, and scaled to range fr@gfociations to calculate capacity for semantic discriminability, dis-
0-1. Displays were generated using the jsPsych JavaScript library MOU“O” difference, and mean speci city. To calculate capacity, we
presented on participants' personal devices. oliowed the methgd in Sectlon 3.3. To.calculate dlstrlbqtlon difference,
Participants were told they would see a set of concepts and setgsused total variation (TV) in Equatiqi) and normalized the TV
of colors, one concept and color at a time. Their task was to rate h¥@/ues to range from 0 to 1. To calculate mean speci city, we rst
much they associated the color with the concept by moving the slid&mputed entropyH) for each concept (Equatioi@)) overN = 71
on the scale from “not at all” to “very much”, and clicking “next” to colors, and then computed the mean entropy over concepts within each
continue. Before beginning, they were shown a list of all concept§t: Given that higher speci city corresponds to lower entropy, we
and the UW-71 colors. They were asked to anchor the endpointsi9fmalized mean entropy to range from 0 to 1 and subtracted the scores
the rating scale for each concept [26] by thinking about which col&0m 1, such that larger numbers indicated higher speci city. Figure
they associated the most/least with that concept, and considering thase in the Supplementary Material shows the raw entropy for each
colors as representing the ends of the slider scale for that concépficept. Concepts with lower entropy/higher speci city corresponded
During the experiment, ratings were blocked by concept, and after ederfolorable concepts in [20], and concepts with higher entropy/lower

ure 5. Relations between capacity for semantic discriminability
d distribution difference (log(normalized (generalized) total variation
tance); left) and speci city (lod( normalized mean entropy); right)
r 2-concept sets (top) and 4-concept sets (bottom). For 4-concept sets
e downsampled from 4845 points to 500 points to avoid overplotting.

block participants were told how many blocks remained. speci city corresponded to non-colorable concepts in [20]. o
Figure 5A shows the relation between capacity for semantic dis-

4.2 Results and Discussion criminability and distribution difference (left), and mean speci city

4.2.1 2-Concept sets (right). For both distribution difference and mean speci city, we plotted

. . .the log of the normalized scores to preserve linearity. The correlation

We began by calculating the mean color-concept association ratifgg\yeen capacity and distribution difference over all 190 2-concept
over participants. Next, for ak= 2 concepts out of the= 20concepts gats was strongly positive((L88) = :93, p < : 001), with a strong trend

3we converted CIELAB to RGB using MATLAB4ab2rgbfunction, which  for capacity to increase with increased distribution difference. The cor-
makes assumptions about monitor characteristics, so the colors were not el@l@tion between capacity and mean speci city was also signi cantly
renderings of CIELAB coordinates. Without calibration, the colors rendered ippsitive (188 = :82, p<:001), but was signi cantly weaker than the
RGB coordintes may vary across monitors, but using a xed correspondergerrelation with distribution difference (Fisher's r-to-z transformation
between D65 CIELAB and RGB can approximate intended colors online [36(188) = 4:85, p<:001). This weaker correlation can be attributed, in




