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Analysis and Design of First-Order Distributed
Optimization Algorithms over

Time-Varying Graphs
Akhil Sundararajan, Bryan Van Scoy, and Laurent Lessard

Abstract— This work concerns the analysis and design
of distributed first-order optimization algorithms over time-
varying graphs. The goal of such algorithms is to optimize
a global function that is the average of local functions using
only local computations and communications. Several dif-
ferent algorithms have been proposed that achieve linear
convergence to the global optimum when the local func-
tions are strongly convex. We provide a unified analysis
that yields the worst-case linear convergence rate as a
function of the condition number of the local functions,
the spectral gap of the graph, and the parameters of the
algorithm. The framework requires solving a small semidef-
inite program whose size is fixed; it does not depend on
the number of local functions or the dimension of their
domain. The result is a computationally efficient method
for distributed algorithm analysis that enables the rapid
comparison, selection, and tuning of algorithms. Finally,
we propose a new algorithm, which we call SVL, that is
easily implementable and achieves a faster worst-case con-
vergence rate than all other known algorithms.

I. INTRODUCTION

In distributed optimization, a network of agents, such as
computing nodes, robots, or mobile sensors, work collabora-
tively to optimize a global objective. Specifically, each agent
i ∈ {1, . . . , n} has access to a local function fi and must
minimize the average of all agents’ local functions

min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x), (1)

by querying its local gradient ∇fi, exchanging information
with neighboring agents, and performing local computations.

This work aims to study the reliability of distributed opti-
mization algorithms in the presence of a time-varying commu-
nication graph. Such a scenario could occur if communication
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links fail due to interference, mobile agents move out of range,
or an adversary is jamming communications.

Distributed optimization is relevant in many application
areas. For example, in large-scale machine learning [7], [9], n
could represent the number of computing units available for
training a large data set. Each fi then denotes the loss function
corresponding to the training examples assigned to unit i.
Another example is sensor networks [20], where each sensor
may have a limited power budget, communication bandwidth,
or sensing capability. The goal is to aggregate all local data
without having a single point of failure. Other applications in-
clude distributed spectrum sensing [2] and resource allocation
across geographic regions [21].

Distributed optimization generalizes both average consensus
and centralized optimization, as we now explain.

a) Consensus: If each agent uses the initial value x0i and
local objective fi(x) = ‖x− x0i ‖2, distributed optimization
reduces to average consensus [27], [29]. The unique optimizer
of (1) is then the average of all initial states: x? = 1

n

∑n
i=1 x

0
i .

Using a gossip update of the form xk+1
i =

∑n
i=1Wijx

k
j where

W is carefully chosen, such methods converge exponentially:
‖xki − x?‖ ≤ ρk with ρ ∈ (0, 1) that depends on W [30]. This
is called a linear rate in the optimization community.

b) Optimization: If n = 1 or if all fi are identical, we
recover the standard centralized optimization setup. Linear
convergence can be guaranteed in certain cases. For example,
the gradient descent method xk+1

i = xki − α∇fi(xki ) achieves
linear convergence if fi is continuously differentiable, smooth,
and strongly convex (formally stated in Assumption 1) [16].

A linear convergence rate for the general case was first
achieved by the exact first-order algorithm (EXTRA) [23].
This algorithm requires storing the previous state in memory:

x1i =

n∑
j=1

Wij x
0
j − α∇fi(x0i ), x0i arbitrary, (2a)

xk+2
i = xk+1

i +

n∑
j=1

Wij x
k+1
j −

n∑
j=1

W̃ij x
k
j

− α
(
∇fi(xk+1

i )−∇fi(xki )
)

(2b)

where W and W̃ are gossip matrices that satisfy certain tech-
nical conditions and α is sufficiently small. Several additional
linear-rate algorithms have since been proposed, including:



2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 4, DECEMBER 2020

AugDGM [34], DIGing [15], [19], Exact Diffusion [35], [36],
NIDS [13], and a unified method [8]. Each of these methods
have updates similar to (2) in that they require agents to store
previous iterates or gradients.

Although linear convergence rates were obtained for the
algorithms above, each algorithm differs in the nature and
strength of its convergence analysis guarantees. For example,
some works show (non-constructively) the existence of a
linear rate [32] whereas others provide specific tuning rec-
ommendations with associated analytic rate bounds (which
may be conservative) [13], [23]. Numerical simulations are
also frequently used [31], but can be misleading because
algorithm performance depends on the graph topology, choice
of functions, algorithm initialization, and algorithm tuning.

The present work makes an effort to systematize the analysis
and design of distributed optimization algorithms. We now
summarize our main contributions.

Analysis framework. We present a universal analysis frame-
work that provides an upper bound on the worst-case linear
convergence rate ρ of a wide range of distributed algorithms
as a function of the parameters κ (local function conditioning)
and σ (network connectedness). Our main result, Theorem 10,
is a semidefinite program (SDP) parameterized by (κ, σ)
whose solution yields an upper bound on ρ. The SDP has a
small fixed size that does not depend on the number of agents
n or the dimension of the function domains and is efficiently
solvable. Our SDP yields robust performance guarantees when
the graph is allowed to vary (even adversarially) at each
iteration. Fig. 2 compares the worst-case linear rate ρ for 8
different algorithms.

Algorithm design. We present a new distributed algorithm,
which we name SVL (the authors’ initials). SVL is derived
by optimizing the SDP from our analysis framework and
provides the fastest known convergence rate to date for this
time-varying graph setting. The rate depends explicitly on κ
and σ, so no tuning is required if these parameters are known
or estimated in advance. When the graph is well-connected,
SVL recovers the performance of gradient descent, which is
optimal in this time-varying graph setting.

Worst-case examples. Although our analysis technique only
provides upper bounds on the worst-case convergence rate for
distributed algorithms, we outline a computationally tractable
optimization procedure that finds numerically matching lower
bounds by constructing worst-case trajectories, suggesting the
bounds found via our analysis technique are tight.

Remark 1 (Accelerated rates): Distributed algorithms that
achieve accelerated [18], [31], [33] or optimal [22] linear rates
have also been proposed. It turns out such methods are not
guaranteed to achieve acceleration when the graph is time-
varying. We discuss this phenomenon in Section II-E, where
we derive lower bounds for the time-varying setting.

The paper is organized as follows. We describe notation
and assumptions in Section II. We state and prove our main
result for certifying worst-case rate bounds in Section III.
We present our SVL algorithm and discuss interpretations
in Section IV. Finally, we demonstrate the tightness of our
bounds by generating worst-case trajectories in Section V.

II. PRELIMINARIES

A. Notation

Let In be the identity matrix in Rn×n. The symbol 1n
denotes the column vector of all ones in Rn. Π := 1

n1n1Tn
is the projection matrix onto 1n. We will sometimes omit
subscripts when dimensions are clear from context. Unless
otherwise indicated, Greek letters denote scalar parameters,
lower-case letters denote column vectors, and upper-case let-
ters denote matrices. Exceptions include the scalars m and L,
which we use in Assumption 1 to conform with convention.
The symbol ⊗ denotes the Kronecker matrix product. ‖x‖
denotes the standard Euclidean norm of a vector x, and
‖A‖ := supx 6=0‖Ax‖/‖x‖ is the spectral norm of a matrix
A. Unless otherwise indicated, subscripts refer to individual
agents while superscripts refer to iteration count. For brevity,
we write the symmetric quadratic form xTQx as

[
?
]T
Qx.

Define the graph G := (V, E) where V := {1, . . . , n} is the
set of agents and E is the set of pairs of agents (i, j) that are
connected. L ∈ Rn×n is a Laplacian matrix associated with G
if L1n = 0 and Lij = 0 if (i, j) /∈ E . The spectral gap of L
is defined as the second-smallest eigenvalue magnitude of L.
Since we consider time-varying graphs, we let Lk denote a
Laplacian matrix associated with Gk.

We denote a symbol on agent i at iteration k by xki along
with its associated fixed point x?i . For all such symbols, we
denote their aggregation over all agents as

xk :=

x
k
1
...
xkn

 and x? =

x
?
1
...
x?n

 .
We denote the associated local and global error coordinates as
x̃ki := xki − x?i and x̃k := xk − x?, respectively.

B. Function and Graph Assumptions

We assume that the local function gradients satisfy the
following sector bound.

Assumption 1: Given 0 < m ≤ L, the local objective
functions fi are continuously differentiable and each satisfy(
∇fi(y)−∇fi(yopt)−m (y − yopt)

)T
×
(
∇fi(y)−∇fi(yopt)− L (y − yopt)

)
≤ 0

for all y ∈ Rd, where yopt satisfies
∑n
i=1∇fi(yopt) = 0.

Remark 2: One way to satisfy Assumption 1 is if the local
functions fi are m-strongly convex with L-Lipschitz continu-
ous gradients, though in general Assumption 1 is weaker.

We define the condition ratio as κ := L/m. This quantity
captures the amount of variation in the curvature of the
objective function. If fi is twice differentiable, κ is an upper
bound on the condition number of the Hessian ∇2fi. In
general, as κ→∞, the functions become poorly conditioned
and more difficult to optimize using first-order methods.

The graph associated with the network of agents can change
at each step of the algorithm, so we assume the following about
the sequence of graph Laplacian matrices {Lk}.
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Assumption 2: The following properties hold at each step
of the algorithm.

1) The graph is connected: there always exists a path
between any two nodes in Gk. This implies that the zero
eigenvalue of Lk has a multiplicity of one for all k.

2) The graph is balanced: every node has equal in-degree
and out-degree. This means that 1TnLk = 0 for all k.

3) The spectral gap of the time-varying graph is uniformly
bounded. In particular, we assume there exists σ ∈ [0, 1)
such that ‖I −Π− Lk‖ ≤ σ for all k. Since the
spectral radius of a matrix is always upper-bounded by
its spectral norm, this implies that σ is a uniform bound
on the spectral gap of each Laplacian matrix in {Lk}.

Remark 3: The assumption that Gk must be connected for
all k is a strong assumption. Works that consider directed or
time varying graphs typically make weaker assumptions, such
as a joint spectrum property or B-connectedness [15]. Never-
theless, our setting (which is equivalent to B-connectedness
with B = 1) is still weaker than assuming a constant graph.
Indeed, NIDS [13] converges for any σ when the graph is
constant, but in Section V-B, we construct a sequence of
graphs that drives NIDS to instability.

C. Algorithm Form

In this paper, we consider the broad class of distributed
optimization algorithms that satisfy the algebraic equationsxk+1

i

yki
zki

 =

A Bu Bv
Cy Dyu Dyv

Cz Dzu Dzv

xkiuki
vki

 , (3a)

uki = ∇fi(yki ), vki =

n∑
j=1

Lkijzkj , (3b)

n∑
j=1

(
Fxx

k
j + Fuu

k
j

)
= 0. (3c)

Equation (3a) describes how agent i’s state xki evolves with
iteration k. The local gradient ∇fi is evaluated at yki and
the quantity zki is transmitted to neighboring agents in (3b).
Finally, we allow for linear state-input invariants to be en-
forced in (3c). Such invariants typically arise from requiring
a particular initialization for the algorithm.

The matrices A, Dyu, and Dzv are square, and the other
matrices have compatible dimensions. The dimension of A is
the number of local states on each agent, the dimension of Dyu

is one, and the dimension of Dzv is the number of variables
that each agent transmits with neighbors at each iteration.

Remark 4 (Dimension reduction): To simplify notation, we
assume the objective function is one-dimensional (d = 1). We
can recover the general d case by replacing each scalar symbol
with a 1 × d row vector (e.g., uki ∈ R1×d) and interpreting
each local gradient ∇fi as a map from R1×d to R1×d.

Remark 5 (Implementation): Not all instances of (3) are
efficiently implementable. For example, if Dyu 6= 0, then yki
depends on uki , which then depends on yki . Such circular
dependencies arise naturally in proximal algorithms, where an
inner optimization problem must be solved at each iteration.

For instance, given a convex differentiable f and parameter
λ > 0, the proximal algorithm

xk+1 = proxλf (xk) := arg min
x

(
λf(x) + 1

2‖x− x
k‖2
)

satisfies the optimality condition λ∇f(xk+1)+xk+1−xk = 0
and can therefore be expressed in the form of (3) as follows:

xk+1 = xk − λuk, yk = xk − λuk, uk = ∇f(yk).

In the forthcoming analysis, we treat implementability and
analysis separately. That is, we derive convergence rate bounds
for general algorithms of the form (3), regardless of whether
they can be efficiently implemented. However, we note that
a sufficient condition for avoiding circular dependencies is if
the feedthrough term satisfies[

Dyu Dyv

Dzu Dzv

]
=

[
0 Dyv

0 0

]
or

[
0 0
Dzu 0

]
. (4)

Putting a distributed optimization algorithm into the form
of (3) is a straightforward algebraic exercise, which we now
demonstrate for two recently proposed algorithms. These
algorithms are parameterized by a stepsize α and a gossip
matrix W . To relate the gossip matrix to the Laplacian matrix,
we set W = I − µL for some scalar µ 6= 0. This provides
an additional tuning parameter, and is akin to the method of
successive overrelaxation used in the numerical solutions of
linear systems of equations [17].

a) EXTRA: The EXTRA algorithm (2) has a state that
depends on two previous timesteps. Using the authors’ recom-
mendation of W̃ = 1

2 (I + W ) together with W = I − µLk,
the equations become

x1 = x0 − α∇f(x0)− µLkx0,
xk+2 = 2xk+1 − xk − α

(
∇f(xk+1)−∇f(xk)

)
− µLk

(
xk+1 − 1

2x
k
)
.

Define the state (xk+1, xk,∇f(xk)). The outputs are now
functions of the state: yk := xk+1 and zk := xk+1 − 1

2x
k.

Finally, summing across agents (left-multiplying by 1T) and
using 1TLk = 0, we find that 1T

(
xk+1 − xk + α∇f(xk)

)
is independent of k, and identically zero thanks to how x1

is initialized. The parameters that characterize EXTRA are
shown below and in Table I.


A Bu Bv
Cy Dyu Dyv

Cz Dzu Dzv

Fx Fu

 =


2 −1 α −α −µ
1 0 0 0 0
0 0 0 1 0
1 0 0 0 0
1 − 1

2 0 0 0
1 −1 α 0

 .

b) DIGing: The DIGing algorithm [15], [19], is an exam-
ple of a gradient tracking algorithm. It begins with an arbitrary
x0 and has two update equations:

s0 = ∇f(x0),

xk+1 = Wxk − αsk,
sk+1 = W̃sk +∇f(xk+1)−∇f(xk).
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Using the authors’ recommendation of W̃ = W , defin-
ing W = I − µLk as before, and defining the state as
(xk, sk,∇f(xk)), we find that the output is yk := xk+1,
two quantities must be communicated between agents, zk :=
(xk, sk), and the invariant is 1T(sk − ∇f(xk)) = 0. The
parameters that characterize DIGing are shown in Table I.

A similar derivation can be applied to a variety of algo-
rithms. Table I summarizes the parameterizations for 8 recently
proposed algorithms.

D. Existence of a Fixed Point
Not all instances of algorithm (3) solve the distributed

optimization problem (1). For an algorithm to be valid, (i)
there must exist a fixed point corresponding to the optimal
solution, and (ii) the iterates must converge to the fixed point.
We address convergence to a fixed point in our main result
of Section III. In this section, however, we provide simple
conditions for verifying the existence of such a fixed point.

A distributed algorithm of the form (3) has a fixed point
(x?, y?, z?, u?, v?) corresponding to the optimal solution of (1)
for all functions satisfying Assumption 1 and all graphs
satisfying Assumption 2 if the following conditions hold.
• Consensus and Optimality: All agents must achieve

consensus on the point at which the gradient is evaluated,
and the point must be a stationary (first-order optimal)
point of f . This means that the fixed point must satisfy
y?1 = . . . = y?n and u?1 + · · ·+ u?n = 0, or in vector form,

(I −Π) y? = 0 and 1Tu? = 0. (5a)

• Robustness to Graph: The fixed point must not depend
on the sequence of graphs {Lk}, so z?1 = . . . = z?n and
v?1 = · · · = v?n = 0, or in vector form,

(I −Π) z? = 0 and v? = 0. (5b)

• Robustness to Functions: The fixed point must satisfy
y?1 = . . . = y?n = yopt and u?i = ∇fi(yopt), where yopt is
the optimizer of (1). For these to hold for any objective
function f , we need

1Ty? and (I −Π)u? unconstrained. (5c)

The following proposition characterizes algorithms with such
a fixed point, which we prove in Appendix A.

Proposition 6 (Existence of fixed point): An algorithm of
the form (3) has a fixed point (x?, y?, z?, u?, v?) that satisfies
the conditions in (5) if and only if

null(A− I) ∩ row(Cy) ∩ null(Fx) 6= {0} (6a)

and

 BuDyu

Dzu

 ∈ col

A− ICy
Cz

 . (6b)

Here, “null”, “col”, and “row” denote the nullspace, column
space, and row space, respectively. Both EXTRA and DIGing
as derived above satisfy the conditions in (6) and therefore
have a fixed point corresponding to the optimal solution of (1).

Remark 7: Proposition 6 guarantees that any instance of
algorithm (3) satisfying (5) has a desirable fixed point in
the presence of a time-varying graph; all agents agree on a

common stationary point of (1). However, Proposition 6 does
not ensure that the algorithm necessarily converges to this
fixed point, nor does it characterize the rate of convergence.
These questions will be explored in Section III.

E. Lower Bounds on Worst-Case Convergence Rates
We now construct simple lower bounds on the worst-case

asymptotic convergence rate of the iterates for any valid
algorithm of the form (3). We do so by separately considering
the two specific instances discussed in Section I.

a) Consensus: Consider the scalar local quadratic func-
tions fi(y) = L

2 (y − ri)
2. Then Assumption 1 holds with

m = L and yopt = 1
n

∑n
i=1 ri.

b) Optimization: Consider the case n = 1. For the graph
to satisfy Assumption 2, the Laplacian matrix must be Lk = 0,
which has spectral gap σ = 0.

In both cases above, the algorithm reduces to a linear system
in feedback with sector-bounded nonlinearity: in the sector
(1 − σ, 1 + σ) for consensus and (m,L) for optimization.
Further, the linear part of the system is strictly proper (since
the algorithm is implementable) and must contain an integrator
(due to the fixed-point conditions). Then, using the lower
bound for such systems in [12], we obtain the following.

Proposition 8: For any ρ < max
{
κ−1
κ+1 , σ

}
, there does

not exist an algorithm of the form (3) that satisfies the
implementability conditions (4) and fixed-point conditions (6)
such that, for all objective functions and Laplacian matrices
satisfying Assumptions 1 and 2, there exists a constant c > 0
such that the bound ‖xki − yopt‖ ≤ c ρk holds for all agents
i ∈ {1, . . . , n} and all iterations k ≥ 0.

Remark 9 (Accelerated rates): These lower bounds, which
are achieved by ordinary gradient descent, imply that accel-
erated algorithms such as the recently proposed SSDA [22]
or distributed versions of heavy-ball [33] or Nesterov accel-
eration [18], [31] do not in fact achieve accelerated rates in
the worst case when the local function gradients are sector
bounded and the graph is time-varying as in Assumptions 1
and 2, respectively.

III. MAIN RESULT

Our main theorem, Theorem 10, consists of a small convex
semidefinite program (SDP) whose feasibility guarantees the
linear convergence of a distributed algorithm in the form of (3).
The algorithm parameters, problem data (κ, σ), and candidate
linear rate ρ all appear as parameters in the SDP. Furthermore,
the SDP has a fixed size that does not depend on n (the number
of agents) or d (the dimension of the domain of f ) and can
thus be efficiently solved using a variety of established solvers.

Theorem 10 (Analysis result): Consider the distributed op-
timization problem (1) solved using algorithm (3). Suppose
Assumptions 1 and 2 hold and further assume the algorithm
satisfies the fixed point conditions (6). Define the matrices

M0 :=

[
−2mL L+m
L+m −2

]
and M1 :=

[
σ2 − 1 1

1 −1

]
.

Let Ψ be a matrix whose columns form a basis for the
nullspace of

[
Fx Fu

]
. If there exist P � 0, Q � 0, and
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TABLE I
ALGORITHM PARAMETERS IN THE FORM OF (3) FOR A VARIETY OF DIFFERENT DISTRIBUTED OPTIMIZATION ALGORITHMS. ALGORITHMS CAN BE

TUNED BY CHOOSING STEPSIZE AND OVERRELAXATION PARAMETERS α AND µ, RESPECTIVELY. ALGORITHMS ARE ORGANIZED BASED ON HOW

MANY INTERNAL STATES THEY HAVE (COLUMNS) AND HOW MANY VARIABLES MUST BE COMMUNICATED IN EACH ITERATION (BLOCK ROWS).

Algorithms with 2 states Algorithms with 3 states

1
co

m
m

un
ic

at
ed

va
ri

ab
le

SVL template
(present work)
See Section IV
for derivation
of (α, β, γ, δ)


1 β −α −γ
0 1 0 −1
1 0 0 −δ
1 0 0 0

0 1 0

 EXTRA [23]



2 −1 α −α −µ
1 0 0 0 0
0 0 0 1 0

1 0 0 0 0

1 − 1
2

0 0 0

1 −1 α 0



Exact Diffusion
(ExDIFF) [35], [36]


2 −1 −α −µ
1 0 −α − 1

2
µ

1 0 − 1
2
µ 0

1 0 0 0

1 −1 0

 NIDS [13]



2 −1 α −α −µ
1 0 0 0 0
0 0 0 1 0

1 0 0 0 0

1 − 1
2

α
2
−α

2
0

1 −1 α 0



2
co

m
m

un
ic

at
ed

va
ri

ab
le

s Unified DIGing
(uDIG) [8]



1 −α −α −µ 0
0 1 0 0 −µ
1 0 0 0 0

1 0 0 0 0

−L+m
2

1 1 0 0

0 1 0

 DIGing [15], [19]



1 −α 0 0 −µ 0
0 1 −1 1 0 −µ
0 0 0 1 0 0

1 −α 0 0 −µ 0

1 0 0 0 0 0
0 1 0 0 0 0

0 1 −1 0



Unified EXTRA
(uEXTRA) [8]



1 −α −α −µ 0
0 1 0 0 −µ
1 0 0 0 0

1 0 0 0 0
−L 1 1 Lµ 0

0 1 0

 AugDGM [34]



1 −α 0 0 −µ αµ
0 1 −1 1 0 −µ
0 0 0 1 0 0

1 −α 0 0 −µ αµ

1 0 0 0 0 0
0 1 0 0 0 0

0 1 −1 0



R � 0 of appropriate sizes such that

ΨT
[
?
]T P 0 0

0 −ρ2P 0
0 0 M0



A Bu
I 0
Cy Dyu

0 I

Ψ � 0 (7a)

[
?
]T

Q 0 0 0
0 −ρ2Q 0 0
0 0 M0 0
0 0 0 M1⊗R



A Bu Bv
I 0 0
Cy Dyu Dyv

0 I 0
Cz Dzu Dzv

0 0 I

 � 0 (7b)

then there exists a constant1 c > 0 independent of i and k such
that for all agents i ∈ {1, . . . , n} and all iterations k ≥ 0,

‖xki − x?i ‖ ≤ c ρk (8)

for some fixed point (x?i , y
?
i , z

?
i , u

?
i , v

?
i ) that satisfies (5).

For fixed algorithm parameters A,Bu, Bv, Cy, Cz, Dyu,
Dyv, Dzu, Dzv, Fx, Fu, function parameters m and L, graph
parameter σ, and candidate rate ρ, the SDP (7) is a lin-
ear matrix inequality (LMI) in the variables (P,Q,R), and
therefore convex. Indeed, (7a) and (7b) are decoupled and
their feasibility may be checked separately. To find the best
(smallest) upper bound, we observe that feasibility of (7) for

1The constant c does not depend on the particular local functions fi and
sequence {Lk}, but does depend on x0i −x?i . We provide an explicit formula
for c in the proof in Appendix B.

some ρ0 implies feasibility for all ρ ≥ ρ0. A bisection search
on ρ is then guaranteed to find the minimal ρ, even though (7)
is not jointly convex in (P,Q,R, ρ). While our result is only
a sufficient condition for convergence, we provide empirical
evidence in Section V-B that suggests that it is in fact tight.

Remark 11: Our main theorem provides conditions under
which the state converges to a fixed point linearly with rate ρ.
However, when the algorithm also satisfies the conditions
in (4) for being efficiently implementable, then under the
conditions of Theorem 10, there exist constants cu, cv , cy ,
and cz such that for all agents i and all iterations k,

‖uki − u?i ‖ ≤ cu ρk, ‖yki − y?i ‖ ≤ cy ρk,
‖vki − v?i ‖ ≤ cv ρk, ‖zki − z?i ‖ ≤ cz ρk,

for some fixed point (x?i , y
?
i , z

?
i , u

?
i , v

?
i ) that satisfies (5). In

particular, the output sequence yki of each agent converges to
the optimizer yopt of (1) linearly with rate ρ.

The core idea behind Theorem 10 is to posit a quadratic
Lyapunov candidate of the form

V k := (xk − x?)T
(
Π⊗ P + (I −Π)⊗Q

)
(xk − x?) (9)

for some appropriate choice of P � 0 and Q � 0. Feasibility
of (7) can be shown to imply V k+1 ≤ ρ2V k, which ensures
linear convergence of the distributed optimization algorithm
when ρ < 1. A preliminary (and less concise) version of
Theorem 10 appeared in [25]. The proof of Theorem 10 is
given in Appendix B.
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IV. ALGORITHM DESIGN

We now use Theorem 10 to design a distributed optimization
algorithm, which we name SVL. Our guiding principle is to
seek the fastest possible rate bound guarantee while keeping
the algorithm as simple as possible. Therefore, we seek an
algorithm with two states that only requires one state to be
communicated at every timestep. Inspired by our previous
work in which we developed a canonical form for distributed
algorithms over time-invariant graphs [26], we restrict our
search to algorithms of the form (3) with

A Bu Bv
Cy Dyu Dyv

Cz Dzu Dzv

Fx Fu

 =


1 β −α −γ
0 1 0 −1
1 0 0 −δ
1 0 0 0
0 1 0

 . (10)

As long as β 6= 0, this algorithm satisfies the fixed point
conditions of Proposition 6. Moreover, the update equations
satisfy (4) and therefore do not contain circular dependencies,
so we can implement the algorithm in a straightforward
fashion as in Algorithm 1. To motivate the structure of our
algorithm, we show how it corresponds to an inexact version
of the alternating direction method of multipliers (ADMM),
as well as how it reduces to well-known consensus and
optimization algorithms in special cases. But first, we show
how to use the SDP (7) to choose the algorithm parameters.

Algorithm 1 (template for the SVL algorithm)

Initialization: Let Lk ∈ Rn×n be a Laplacian matrix. Agents
i ∈ {1, . . . , n} choose initial local state x0i ∈ Rd arbitrarily and
w0
i ∈ Rd such that

∑n
i=1 w

0
i = 0 (e.g. w0

i = 0).
for iteration k = 0, 1, 2, . . . do

for agent i ∈ {1, . . . , n} do
Local communication

vki =
∑n
j=1 L

k
ij x

k
j (C.1)

Local gradient computation
yki = xki − δ v

k
i (C.2)

uki = ∇fi(yki ) (C.3)
Local state update
xk+1
i = xki + β wki − αu

k
i − γ v

k
i (C.4)

wk+1
i = wki − v

k
i (C.5)

end for
end for

A. Choosing the Algorithm Parameters
The problem of minimizing the worst-case convergence

rate ρ over the algorithm parameters (α, β, γ, δ) and SDP
solution (P,Q,R) subject to the SDP being feasible is difficult
due to the nonlinear matrix inequalities (7). Instead, we
show that for a particular choice of (α, γ, δ), the remaining
parameters (β, ρ) can be chosen such that the SDP is feasible,
where the matrix in (7b) is rank one. We have performed
extensive numerical optimizations of the SDP, suggesting that
the optimal parameters do in fact have this structure. We now
state our main design result, which describes the convergence
rate of the SVL algorithm. We prove the result in Appendix C.

Theorem 12 (SVL): Consider applying Algorithm 1 to the
distributed optimization problem (1), and suppose Assump-
tions 1 and 2 hold with 0 < m < L and 0 ≤ σ < 1. Define
η := 1 + ρ− κ (1− ρ) and choose the parameters

α =
1− ρ
m

, γ = 1 + β, δ = 1, (11)

where β and ρ ∈
[
L−m
L+m , 1

)
satisfy the constraints(

2β − (1− ρ)(κ+ 1)
)
(β − 1 + ρ2) < 0, (12a)

ρ2
(
β − 1 + ρ2

β − 1 + ρ

)(
2− η − 2β

2ρ2β − (1− ρ2)η

)
×
(

(2ρ2 + η)β − (1− ρ2)η

(1 + ρ)(η − 2ηρ+ 2ρ2)− (2ρ2 + η)β

)
= σ2. (12b)

Then there exists a constant c > 0 independent of i and k
such that for all agents i ∈ {1, . . . , n} and all iterations k ≥ 0,
‖yki − yopt‖ ≤ c ρk where yopt ∈ Rd is the optimizer of (1).

Theorem 12 provides conditions on parameters (α, β, γ, δ)
of Algorithm 1 such that the algorithm converges with rate
no slower than ρ. The theorem, however, does not address the
problem of optimizing the convergence rate since β and ρ must
only be chosen to satisfy the constraints (12). This is because
the optimal parameters do not admit a closed-form solution
for the convergence rate ρ as a function of the spectral gap σ
and function parameters m and L. However, we now provide
a systematic method for computing the optimal parameters.

The parameters must satisfy (12b), but this equation does
not have a closed-form solution for ρ. Instead, we consider
fixing the rate ρ and maximizing the corresponding spectral
gap. We can then choose β to maximize σ2 in (12b). Setting
the derivative equal to zero, we find that the value of β which
maximizes σ2 for a fixed convergence rate ρ satisfies

dσ2

dβ
= 0 =⇒

(
β
(
1− κ+ 2ρ(1 + ρ)

)
− η(1− ρ2)

)
×
(
s0 + s1β + s2β

2 + s3β
3
)

= 0,

where the coefficients si are given by

s0 := η
(
1− ρ2

)2(
η − (3− η)ηρ+ 2(1− η)ρ2 + 2ρ3

)
,

s1 := −
(
1− ρ2

)(
η3ρ+ 4ρ5 − 2ηρ2(2ρ2 + ρ− 3)

+ η2
(
4ρ3 − 4ρ2 − 6ρ+ 3

))
,

s2 := 3η(1− ρ)2(1 + ρ)(2ρ2 + η),

s3 := (2ρ2 + η)(2ρ3 − η).

Solving the first factor for β, we find that it does not satisfy
the inequality (12a) and is therefore not a valid solution. The
optimal β must then make the second factor zero. Therefore,
we can do a bisection search over ρ, where at each iteration
of the bisection search we solve the cubic equation

s0 + s1β + s2β
2 + s3β

3 = 0 (13)

to find the unique real solution β that satisfies (12a). Substi-
tuting this value of β into (12b) we can solve for σ. Denote
the solution by σ̂. If σ̂ < σ, we increase ρ; otherwise, we
decrease ρ. We then repeat until σ̂ is sufficiently close to
σ. Refer to Algorithm 2 for a summary of this procedure
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for finding the parameters β and ρ that optimize the worst-
case convergence rate. We define SVL to be Algorithm 1 with
parameters chosen using Algorithm 2.

Algorithm 2 (computing the SVL parameters)
Initialization: Let 0 < m < L, 0 ≤ σ < 1, and ε > 0. Define
κ := L/m. Set ρ1 = 0 and ρ2 = 1.
while ρ2 − ρ1 > ε do
ρ = (ρ1 + ρ2)/2

Let β be the unique real solution to (13) that satisfies (12a).
Using this value of β, let σ̂ denote the solution to (12b).
if σ̂ < σ then
ρ1 = ρ

else
ρ2 = ρ

end if
end while
return ρ, β

Fig. 1 displays the worst-case convergence rate ρ as a
function of the spectral gap σ and the centralized gradient
rate κ−1

κ+1 for SVL. One of the remarkable aspects of the
SVL algorithm is that it actually achieves the same worst-case
convergence rate as centralized gradient descent if the spectral
gap is sufficiently small. In this case, there is sufficient mixing
among the agents so that the convergence rate is limited by
the difficulty of the optimization problem and not the problem
of having agents agree on the solution (i.e., consensus). This
corresponds to the horizontal lines for small values of σ in
the top panel of Fig. 1. Viewed another way, the convergence
rate is limited by the difficulty of the optimization problem
when the problem is ill-conditioned (i.e., κ is large), which
corresponds to the curves approaching the straight line at
ρ = κ−1

κ+1 in the bottom panel of Fig. 1.
Remark 13 (Optimality): We conjecture that the SVL para-

meters (α, β, γ, δ) produce the fastest worst-case convergence
rate over all algorithms in the form of Algorithm 1 that is
certifiable using Theorem 10. However, we make no formal
claims of optimality of the SVL algorithm in this paper.

B. Interpretation of SVL as Inexact ADMM

To motivate the structure of SVL, we show how SVL can
be interpreted as an inexact version of the alternating direction
method of multipliers (ADMM). Using the formulation in [4,
Section 7.1], the problem (1) can be solved using ADMM:

xk+1
i = arg min

x
fi(x) + (x− yki )Tzki + β

2 ‖x− y
k
i ‖2 (14a)

yk+1
i =

1

n

n∑
j=1

xk+1
j (14b)

zk+1
i = zki + β (xk+1

i − yk+1
i ) (14c)

where (xki , y
k
i , z

k
i ) are the variables associated with agent i

at time k, and β is the ADMM parameter. To implement
this algorithm, however, each agent must solve the local
optimization problem (14a) exactly as well as compute the
exact average (14b) at each iteration. Instead, we consider
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Fig. 1. Worst-case linear rate ρ of SVL in Theorem 12 as a function of
κ and σ. Top plot: as κ → 1 (quadratic objective), we obtain ρ = σ
(optimal linear consensus rate). Bottom plot: as σ → 0 (fully connected
graph), we obtain ρ = κ−1

κ+1
(optimal centralized gradient rate).

a variant where the computations and communications are
inexact. Specifically, we replace the exact minimization (14a)
with a single gradient step with initial condition yki and
stepsize α > 0, and we replace the exact averaging step (14b)
with a single gossip step using the Laplacian matrix Lk. This
gives the following inexact version of ADMM:

xk+1
i = yki − α

(
∇f(yki ) + zki

)
yk+1
i = xk+1

i −
n∑
j=1

Lk+1
ij xk+1

j

zk+1
i = zki + β (xk+1

i − yk+1
i )

Defining the state wki := −αβ z
k−1
i , this algorithm is equivalent

to Algorithm 1 with γ = 1+β and δ = 1. In other words, SVL
corresponds to an inexact version of ADMM, where α is the
stepsize of the gradient step and β is the ADMM parameter.
See [5], [24] for other distributed ADMM variants.

C. Special Cases

We now show how the SVL algorithm reduces to well-
known consensus and optimization algorithms in special cases.

a) n = 1: With only one agent, the distributed optimiza-
tion problem (1) is equivalent to centralized optimization. In
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Fig. 2. Comparison of upper bounds for linear convergence rate ρ (smaller is better) as a function of graph connectedness σ, derived from
Theorem 10 using κ = 10. (Left) stepsize α is optimized for each algorithm. (Right) both stepsize α and overelaxation parameter µ are optimized
for each algorithm. The SVL algorithm (derived in Section IV) outperforms all the tested methods. SVL has no tunable parameters so it is the same
in both scenarios. The lower bound (see Section II-E) corresponds to ρ ≥ κ−1

κ+1
≈ 0.818 (optimal centralized gradient rate) and ρ ≥ σ (optimal

average consensus rate).

this case, the Laplacian matrix is simply the scalar Lk = 0,
so vk1 = 0 for all k ≥ 0. Algorithm 1 then simplifies to

xk+1
1 = xk1 − α∇f(xk1), x01 arbitrary,

which is ordinary gradient descent with stepsize α. The fastest
possible gradient rate of ρ = κ−1

κ+1 is achieved when α = 2
L+m .

b) κ = 1: When the condition ratio is unity (i.e., m =
L), the distributed optimization problem (1) is equivalent to
average consensus. In this case, the parameters of SVL are
simply α = 1

L , β = 1, γ = 2, and δ = 1. Also, the objective
functions are quadratic, so we may assume without loss of
generality that they have the form fki (x) = L

2 ‖x − rki ‖2,
where rki ∈ Rd is a parameter on agent i ∈ {1, . . . , n} at
iteration k. The SVL algorithm then simplifies to

xk+1
i = xki −

n∑
j=1

Lkij xkj +
(
rki − rk−1i

)
, x0i = r0i ,

which is a dynamic average consensus algorithm since the ref-
erence signals are continually injected into the dynamics [10].
When the objective functions are constant, the ri terms cancel
from the iterations and only affect the initial conditions. This
case is referred to as static average consensus [27], and the
worst-case rate of convergence is ρ = σ [29].

V. NUMERICAL RESULTS

In this section, we compare the worst-case performance of
SVL with that of other first-order distributed algorithms.

A. Algorithm Comparison (Upper Bounds)

Theorem 10 provides an upper bound on the worst-case
convergence rate. We used this result to compare all algorithms
in Table I, including SVL. The results are shown in Fig. 2. For

each algorithm, we used a bisection search to find the smallest
rate ρ that yielded a feasible solution to the SDP (7). We
implemented the SDP in Julia [3] with the JuMP [6] modeling
package and the Mosek interior point solver [1]. In an outer
loop, we performed a parameter search for each algorithm to
find the step size α and overrelaxation parameter µ that yielded
the smallest possible ρ. Specifically, we used Brent’s method
and the Nelder–Mead method, respectively, as implemented in
the Optim package [14] as σ ranged from 0 to 1.

As shown in Fig. 2, optimizing over µ further improves
worst-case performance. Our proposed SVL algorithm outper-
forms all methods we tested. Also shown in Fig. 2 is the lower
bound described in Section II-E, namely ρ ≥ max{κ−1κ+1 , σ},
which holds for any distributed algorithm.

B. Approximate Worst-Case Examples (Lower Bounds)

In an effort to show that the upper bounds for each al-
gorithm in Fig 2 were likely tight, we searched for signals
{xk, uk, vk, yk, zk} that satisfied (3) for some choice of fi
and Lk satsifying Assumptions 1 and 2, respectively.

We first solved a relaxed version of the problem, where we
replaced Assumptions 1 and 2 by the weaker conditions (17)
and (18), respectively. We used the following greedy heuristic.
For a given algorithm and rate ρ, we solved (7) to obtain
(P,Q,R). At each time step k, we then maximized the
Lyapunov increment V k+1−ρ2V k, where V k is defined in (9).
We solved the following optimization problem for k ≥ 0.

maximize
uk
i ,v

k
i ∈Rd

V k+1 − ρ2V k

such that (3a), (3c), and (18) hold,
(17) holds for i = 1, . . . , n,

1Tvk = 0.

(15)
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Fig. 3. Approximate worst-case trajectories for EXTRA, NIDS, DIGing, and SVL. Trajectories were found by solving the relaxed problem (15). We
used α optimized as in Fig. 2 and the default µ = 1. Simulations were performed for κ = 10, σ ∈ {0.3, 0.6, 0.9}, and n = d = 2. Dashed
lines indicate corresponding upper bounds obtained from Theorem 10 and shown in Fig. 2. All traces were vertically translated to improve clarity.

For k = 0, we also included x0 as an optimization variable
and the normalization V 0 = 1. For k ≥ 1, we solved (15)
using the xk found at the previous iteration and warm-starting
uk, vk. We used the Ipopt [28] local solver with default settings
since (15) is a nonconvex quadratically constrained quadratic
program. Note that we must choose parameters n and d.

Our relaxed heuristic using n = d = 2 was successful in
constructing trajectories that matched the worst-case bounds
from (7). To illustrate, we simulated EXTRA, NIDS, DIGing,
and SVL with κ = 10 and a few values of σ in Fig. 3.
For each trajectory, we plotted ‖yk − y?‖ together with the
corresponding upper bound ρ found from Theorem 10. We
obtained similar results for the other algorithms from Table I.

Since we used the relaxation (18) to construct zk and vk,
there is no guarantee that there will exist a linear Laplacian
Lk such that vk = Lkzk. However, finding whether such an
Lk exists amounts to solving a convex optimization problem:

minimize
Lk∈Rn×n

‖I −Π− Lk‖

such that (Lk ⊗ I)zk = vk,

Lk1 = 0, 1TLk = 0.

(16)

If (16) is feasible and its optimal value is less than or equal
to σ, then the associated Lk is a valid Laplacian matrix at
timestep k. While there is no guarantee that (16) will even
be feasible, we reasoned that since there are n2 variables and
2n + ndc linear constraints, where d and c are the number
of rows of Cy and Cz , respectively, we could increase our
chances of finding feasible Lk with n large and d and c small.

In Figure 4, we show a successful construction for the NIDS
algorithm, which has c = 1. We solved (15) with n = 15 and
d = 1, and solved (16) at each timestep. An optimal cost
for (16) of σ was always achieved.

This result indicates that the upper bound for NIDS in Fig. 2
is likely tight, and that NIDS is not robustly stable in the
time-varying setting. In other words, the network-independent
rate bound enjoyed by NIDS in the constant-graph setting [13,
Thm. 2] does not carry over to the time-varying setting.
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102

103
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k

y
||
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Fig. 4. Worst-case trajectories for NIDS found by solving (15) and
successfully solving (16) to construct a sequence of Laplacians {Lk}.
Simulations were performed using optimized α, µ = 1, κ = 10,
n = 15, and d = 1 for σ ∈ {0.3, 0.6, 0.9}. Trajectories were plotted
with their accompanying rate bounds (dashed lines) from Theorem 10
and translated to improve clarity.

Remark 14: There may be other approaches to finding a
worst-case Lk that perform better. For example, one might try
alternating convex optimizations or including Lk directly as
an optimization variable in a nonlinear program.

VI. CONCLUSION

We presented a universal analysis framework for a broad
class of first-order distributed optimization algorithms over
time-varying graphs. The framework provides worst-case cer-
tificates of linear convergence via semidefinite programming,
and we show empirically that our rate bounds are likely tight.
Optimizing the SDP from our analysis framework, we de-
signed a novel distributed algorithm, SVL, which outperforms
all known algorithms in this time-varying setting.
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APPENDIX

A. Proof of Proposition 6

Suppose (6) holds, and denote the optimizer of (1) by yopt.
Then there exist vectors p and q such that

0 = (A− I) p

yopt = Cyp

0 = Fxp

and


Bu = (A− I) q

Dyu = Cyq

Dzu = Czq.

For all i ∈ {1, . . . , n}, use these vectors to define the points

x?i = p− q∇fi(yopt), y?i = yopt, z?i = Czp,

u?i = ∇fi(yopt), v?i = 0.

This is a fixed point of algorithm (3), and the fixed point
satisfies the conditions in (5) since yopt is the optimizer of (1).

Now suppose (x?, y?, z?, u?, v?) is a fixed point of (3)
satisfying (5). Let p = (1/n)

∑n
i=1 x

?
i . Since 1Tu? = 0,

v? = 0, and 1Ty? is unconstrained, we have from (3a) and (3c)
that p 6= 0 is in the set (6a). Now let r be any nonzero vector
such that rT1 = 0. Then from (3a), we have that

0 =

A− ICy
Cz

 (rTx?) +

 BuDyu

Dzu

 (rTu?).

Since this must hold for arbitrary rTu?, this implies (6b).

B. Proof of Theorem 10

Assumptions 1 and 2 lead to quadratic inequalities that will
be useful in proving our main result. These are stated in the
following propositions.

Proposition 15: Suppose Assumption 1 holds for the lo-
cal objective functions fi. Let (yki , u

k
i ) satisfy (3b), and let

(y?i , u
?
i ) be a fixed point that satisfies (5). Then[

ỹk

ũk

]T
(M0 ⊗ I)

[
ỹk

ũk

]
≥ 0. (17)

Proof: Using the definition of M0, the quadratic form is[
ỹk

ũk

]T
(M0 ⊗ I)

[
ỹk

ũk

]
= −2

n∑
i=1

(ũki −mỹki )T(ũki − Lỹki ).

Since the fixed point satisfies (5), Assumption 1 implies that
this is nonnegative with yopt = y?1 = . . . = y?n.

Proposition 16: Suppose Assumption 2 holds for the graph
Gk at each iteration. Let (zki , v

k
i ) satisfy (3b), and let (z?i , v

?
i )

be a fixed point that satisfies (5). Then for all R � 0,[
z̃k

ṽk

]T (
M1 ⊗ (I −Π)⊗R

) [z̃k
ṽk

]
≥ 0. (18)

Proof: From the definition of the matrix norm and
Assumption 2, we have that

σ ≥
∥∥I −Π− Lk

∥∥ =
∥∥(I −Π− Lk)(I −Π)

∥∥
= max
y∈Rn,y 6=0

∥∥(I −Π− Lk)(I −Π)y
∥∥

‖y‖
.

Without loss of generality, y = Πη+(I−Π)φ, where η and φ
are arbitrary. By orthogonality, ‖y‖2 = ‖Πη‖2+‖(I −Π)φ‖2.
Substituting the decomposition of y into the above inequality,

σ ≥ max
φ,η∈Rn,y 6=0

∥∥(I −Π− Lk)(I −Π)φ
∥∥√

‖Πη‖2 + ‖(I −Π)φ‖2

= max
φ∈Rn,y 6=0

∥∥(I −Π− Lk)(I −Π)φ
∥∥

‖(I −Π)φ‖

= max
φ∈Rn,y 6=0

∥∥(I −Π)(φ− Lkφ)
∥∥

‖(I −Π)φ‖
,

where the last two steps follow because the maximum is
attained with η = 0, and LkΠ = ΠLk = 0. Squaring both
sides and rewriting as a quadratic form yields[

φ
Lkφ

]T (
M1 ⊗ (I −Π)

) [ φ
Lkφ

]
≥ 0 (19)

for all φ ∈ Rn. Now let p denote the dimension of zki . Then
since R � 0, it has the decomposition

R =

p∑
`=1

µ` w`w
T
` ,

where w` ∈ Rp and µ` ≥ 0. Then using that ṽk = (Lk⊗Ip) z̃k,
the quadratic form is[

z̃k

ṽk

]T(
M1 ⊗ (I −Π)⊗R

) [z̃k
ṽk

]
=
∑
`

µ`
[
?
]T (

M1 ⊗ (I −Π)
) [(I ⊗ wT

` ) z̃k

(I ⊗ wT
` ) ṽk

]
=
∑
`

µ`
[
?
]T (

M1 ⊗ (I −Π)
) [ (I ⊗ wT

` ) z̃k

Lk (I ⊗ wT
` ) z̃k

]
,

which is nonnegative from (19) with φ← (I ⊗ wT
` ) z̃k.

Let (xk, yk, zk, uk, vk) denote a trajectory of algorithm (3).
Since the algorithm satisfies the fixed point conditions (6) (by
assumption), we have from Proposition 6 that there exists
a fixed point (x?, y?, z?, u?, v?) satisfying (5). The global
optimizer is unique from Assumption 1, so the fixed point
conditions (5a) imply that y?1 = . . . = y?n = yopt with yopt the
optimizer of (1).

Since the trajectory satisfies the invariant (3c) and the
columns of Ψ form a basis for the nullspace of

[
Fx Fu

]
,

there exists a vector s̃k such that

Ψ s̃k =
1√
n

n∑
i=1

[
x̃ki
ũki

]
.

Multiplying the matrix in (7a) on the right and left by s̃k and
its transpose, respectively, we obtain the consensus inequality

(x̃k+1)T(Π⊗ P ) x̃k+1 − ρ2 (x̃k)T(Π⊗ P ) x̃k

+

[
ỹk

ũk

]T
(M0 ⊗Π)

[
ỹk

ũk

]
≤ 0. (20a)

Now choose the vectors w2, . . . , wn ∈ Rn such that the
matrix

[
1n/
√
n w2 . . . wn

]
is orthonormal. Then we can
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multiply the matrix in (7b) on the right and left by the
weighted sum

n∑
i=1

(w`)i

x̃kiũki
ṽki


and its transpose, respectively, and sum over ` ∈ {2, . . . , n}
to obtain the disagreement inequality

(x̃k+1)T
(
(I −Π)⊗Q

)
x̃k+1 − ρ2(x̃k)T

(
(I −Π)⊗Q

)
x̃k

+

[
ỹk

ũk

]T (
M0 ⊗ (I −Π)

) [ỹk
ũk

]
+

[
z̃k

ṽk

]T (
M1 ⊗ (I −Π)⊗R

) [z̃k
ṽk

]
≤ 0, (20b)

where we used that {wi}ni=1 form an orthonormal basis for
Rn. Summing the inequalities in (20), we obtain

V k+1 − ρ2V k +

[
ỹk

ũk

]T
(M0 ⊗ I)

[
ỹk

ũk

]
+

[
z̃k

ṽk

]T (
M1 ⊗ (I −Π)⊗R

) [z̃k
ṽk

]
≤ 0,

where V k is defined in (9). The quadratic forms in the last
two terms are nonnegative from Propositions 15 and 16,
which implies V k+1 ≤ ρ2 V k. We then apply this inequality
iteratively to obtain V k ≤ ρ2k V0 for all k ≥ 0. Now define

T := Π⊗ P + (I −Π)⊗Q,

and note that T � 0 since P and Q are positive definite. Then
letting cond(T ) = λmax(T )/λmin(T ) denote the condition
number of T , we have the bound

‖xki −x?i ‖2 ≤ ‖xk−x?‖2 ≤ cond(T )V k ≤ ρ2k cond(T )V 0.

Therefore, the bound (8) holds with c =
√

cond(T )V 0.

C. Proof of Theorem 12

Substituting the template (10) into the LMI (7a) reduces to

P11

[
1− ρ2 −α
−α α2

]
+M0 � 0,

which is satisfied with α = (1 − ρ)/m and P11 = m (L−m)
ρ (1−ρ) .

Note that this LMI is known to describe the convergence rate
of centralized gradient descent; see [11, Section 4.4].

Now consider the potential solution to (7b) given by

Q =
t3
α2ρ2

[
1 + ρ2 t1t4 −1

−1 1

]
and R =

t5
α2t2

, where

t1 := 2 (1− β)− η, t2 := β − 1 + ρ2,

t3 := β (η + 2ρ2)− η (1− ρ2), t4 := 2βρ2 − η (1− ρ2),

t5 := (1− β − ρ)
(
β (η + 2ρ2)− (1− ρ2)(1− κ+ 2κρ)

)
,

t6 :=
(
2− α(L+m)

)
(1−ρ2)2−

(
2(1−ρ4)− α(L+m)

)
β.

Using these values along with the value for σ2 in (12b), the
matrix in (7b) is equal to the rank-one matrix − 1

t2t4
zzT, where

z :=
1

αρ


t6
−t2t3

α t2
(
2− α (L+m)

)
β
(
t3 − αρ2(L+m)

)
 .

In order for this to be a valid solution, we must have t3 > 0
and t1/t4 > 0 (so that Q � 0), t5/t2 ≥ 0 (so that R � 0),
and t2t4 > 0 (so that (7b) holds). All of these inequalities hold
if and only if (12a) holds. Therefore, the SDP has a rank-one
solution using the parameters in (11) if β and ρ satisfy (12).
The convergence bound then follows from Theorem 10 and
Remark 11.
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