the speed-robustness trade-off for iterative optimization algorithms

Bryan Van Scoy Miami University

Laurent Lessard
Northeastern University

Fall, 2021

 $\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x)$

In this talk:

- Iterative algorithms can be viewed as robust controllers.
- Algorithms can be designed, in much the same way that controllers can be designed.
- Controls and optimization!

Noisy oracle model

$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^d} f(x)$$

We can query a noisy oracle $g(x) = \nabla f(x) + w$, where w is zero-mean and independent across queries.

Use cases:

- Must approximate ∇f via finite differencing.
- Requires solving auxiliary optimization problem numerically or simulating; inexact solutions.
- Empirical risk minimization in the context of learning;
 evaluate expected value via sample-based approximations.

1

Gradient descent (GD)

$$x_{t+1} = x_t - \alpha \, g(x_t)$$

Geometric phase

- Noise is small compared to gradient
- x_t makes rapid progress toward x^*

Stationary phase

- Noise is comparable to gradient
- x_t moves randomly in a ball about x^*

Random quadratic function: $f(x) = x^{\mathsf{T}}Qx$, d = 10. Eigenvalues satisfy $1 \le \lambda(Q) \le 10$.

Random quadratic function: $f(x) = x^{\mathsf{T}}Qx$, d = 10. Eigenvalues satisfy $1 \le \lambda(Q) \le 10$.

Acceleration

Polyak acceleration (Heavy Ball)

$$x_{t+1} = x_t - \alpha g(x_t) + \beta (x_t - x_{t-1})$$

Nesterov acceleration (Fast Gradient)

$$y_t = x_t + \beta(x_t - x_{t-1})$$
$$x_{t+1} = y_t - \alpha g(y_t)$$

- Similar geometric & stationary phases
- More parameters to tune
- Potentially better performance!

7

Gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

Heavy ball method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Nesterov's accelerated method

$$y_k = x_k + \beta(x_k - x_{k-1})$$

$$x_{k+1} = y_k - \alpha \nabla f(y_k)$$

 10^{0}

 10^{-2}

 10^{-4}

20

40

60

80

Performance metrics

Rate of convergence (ρ)

$$||x_k - x^\star|| \le (\mathsf{const}) \cdot \rho^k$$

Smaller ρ means faster convergence (no noise regime).

Sensitivity to noise (γ)

$$\limsup_{N \to \infty} \frac{1}{N} \mathbf{E} \sum_{k=0}^{N-1} ||x_k - x^*||^2 = \gamma^2$$

Smaller γ means more noise robustness (smaller ball).

(

Questions

How can we mediate the trade-off between speed and robustness for accelerated algorithms?

Can we design algorithms that are Pareto-optimal for different function classes? What will they look like?

Outline

- Algorithms as dynamical systems
- Three-parameter family of algorithms
- Quadratic functions
 - Robust Heavy Ball
- Strongly convex functions
 - Robust Accelerated Method
- Numerical validation

Dynamical system interpretation

Heavy ball:
$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Define $u_k := \nabla f(x_k)$ and $p_k := x_{k-1}$

12

Dynamical system interpretation

Heavy ball:
$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta(x_k - x_{k-1})$$

Define $u_k := \nabla f(x_k)$ and $p_k := x_{k-1}$

13

3-parameter family

$$y_t = x_t + \beta(x_t - x_{t-1})$$
$$z_t = x_t + \eta(x_t - x_{t-1})$$
$$x_{t+1} = y_t - \alpha g(z_t)$$

Generalization of Polyak and Nesterov acceleration:

- Recovers Gradient descent when $\beta = \eta = 0$.
- Recovers Polyak acceleration when $\eta = 0$.
- Recovers Nesterov acceleration when $\eta = \beta$.

3-parameter family

$$\xi_{k+1} = \begin{bmatrix} 1+\beta & -\beta \\ 1 & 0 \end{bmatrix} \xi_k + \begin{bmatrix} -\alpha \\ 0 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 1+\eta & -\eta \end{bmatrix} \xi_k$$

When designing algorithms, we can:

- Search over all (A, B, C) of a given size.
- Search over the specific parameterization (α, β, η)

Quadratic case $Q_{m,L}$

$$Q_{m,L} \colon$$
 Functions of the form $f(x) = x^{\mathsf{T}}Qx$ where $mI_d \preceq Q \preceq LI_d$

 Heavy Ball (HB) achieves fastest possible rate, when used with the tuning:

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{m})^2}, \qquad \beta = \left(\frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}\right)^2, \qquad \eta = 0$$

Quadratic case $Q_{m,L}$

Let
$$f(y) = \frac{1}{2}(y - y^*)^T Q(y - y^*)$$
.

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k$$
$$u_k = \nabla f(y_k) + w_k$$

Closed-loop map:

$$(x_{k+1} - x^*) = (A + BQC)(x_k - x^*) + Bw_k$$

Quadratic case $Q_{m,L}$

$$(x_{k+1} - x^*) = (A + BQC)(x_k - x^*) + Bw_k$$

- ρ is the rate of convergence when $w_k = 0$ (spectral radius of A + BQC).
- γ^2 is the squared \mathcal{H}_2 -norm of the system (steady-state covariance).

Quadratic performance

$$\rho = \sup_{q \in [m,L]} \rho (A + qBC).$$

If $\rho < 1$, then

$$\gamma^2 = \sup_{q \in [m,L]} \sigma^2 d \cdot (B^\mathsf{T} P B),$$

where P is the solution to

$$(A+qBC)^{\mathsf{T}}P(A+qBC)-P+C^{\mathsf{T}}C=0.$$

Both ρ and γ are nonconvex functions of (A, B, C).

Quadratic performance of 3-parameter algorithms

$$\begin{split} \rho &= \max_{q \in \{m,L\}} \begin{cases} \sqrt{\beta - \alpha \eta q} & \text{if } \Delta < 0 \\ \frac{1}{2} \left(|\beta + 1 - \alpha q - \alpha \eta q| + \sqrt{\Delta} \right) & \text{if } \Delta \geq 0 \end{cases} \\ \text{where } \Delta &:= (\beta + 1 - \alpha q - \alpha \eta q)^2 - 4(\beta - \alpha \eta q). \end{split}$$

If $\rho < 1$, then

$$\gamma^2 = \max_{q \in \{m, L\}} \frac{\sigma^2 d \alpha (1 + \beta + (1 + 2\eta)\alpha \eta q)}{q (1 - \beta + \alpha \eta q)(2 + 2\beta - (1 + 2\eta)\alpha q)}$$

Both are easy to evaluate and analyze!

Robust Heavy Ball (RHB)

Let
$$\rho \in \left[\frac{\sqrt{L}-\sqrt{m}}{\sqrt{L}+\sqrt{m}},1\right)$$
 . RHB is the 3-parameter algorithm

$$\alpha = \frac{1}{m}(1 - \rho)^2, \qquad \beta = \rho^2, \qquad \eta = 0$$

On the class $Q_{m,L}$, RHB achieves

$$ho_{\mathsf{RHB}} =
ho \quad \mathsf{and} \quad \gamma_{\mathsf{RHB}}^2 = rac{\sigma^2 d}{m^2} rac{1 -
ho^4}{(1 +
ho)^4}.$$

Setting $\rho = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}$ recovers ordinary Heavy Ball.

2

 (ρ, γ) tradeoff for $Q_{m,L}$, with m=1 and L=10.

Strongly convex case $F_{m,L}$

$F_{m,L}$: Differentiable functions for which:

- 1. $f(y) \frac{1}{2}m\|y\|^2$ is a convex function of y
- **2.** $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$ for all $x, y \in \mathbb{R}^d$
- Triple Momentum (TM) achieves fastest possible rate.

$$\alpha = \frac{\sqrt{L} - \sqrt{m}}{L^{3/2}}, \qquad \beta = \frac{(\sqrt{L} - \sqrt{m})^2}{L + \sqrt{mL}}, \qquad \eta = \frac{(\sqrt{L} - \sqrt{m})^2}{2L - m + \sqrt{mL}}$$

• Fast Gradient (FG) is a popular choice.

$$\alpha = \frac{1}{L}, \qquad \beta = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}, \qquad \eta = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}$$

Outline of approach for $F_{m,L}$

Lifting increases the number of variables but allows use of a simpler Lyapunov function.

Lifted dynamics

Original system:

state: x_t

Lifted system:

Lyapunov approach

Certifying a convergence rate

If $x_{k+1} = f(x_k)$ and we can find a function V(x) satisfying

$$V(x) \ge \|x\|^2$$
 (positivity)
$$V(f(x)) \le \rho^2 V(x)$$
 (decrease condition)

Then we have geometric decrease:

$$||x_k||^2 \le V(x_k) \le \rho^2 V(x_{k-1}) \le \dots \le \rho^{2k} V(x_0)$$

Lyapunov approach

Certifying sensitivity

If $x_{k+1} = f(x_k, w_k)$ and we can find a function V(x) satisfying

$$\mathbf{E}\,V(x)\geq 0\qquad\text{(positivity)}$$

$$\mathbf{E}\,V(f(x,w))-\mathbf{E}\,V(x)+\mathbf{E}\|x\|^2\leq \gamma^2\qquad\text{(decrease)}$$

Then we have bounded steady-state covariance:

$$\mathbf{E} V(x_N) - \mathbf{E} V(x_0) + \mathbf{E} \sum_{k=0}^{N-1} ||x_k||^2 \le N\gamma^2$$

$$\implies \limsup_{N \to \infty} \frac{1}{N} \mathbf{E} \sum_{k=0}^{N-1} ||x_k||^2 \le \gamma^2$$

2

Interpolation

Interpolation in $F_{m,L}$ (Taylor et al. 2017)

Let $y_1, \ldots, y_k \in \mathbb{R}^d$ and $u_1, \ldots, u_k \in \mathbb{R}^d$ and $f_1, \ldots, f_k \in \mathbb{R}$. The following two statements are equivalent.

- **1.** There exists a function $f \in F_{m,L}$ such that $f(y_i) = f_i$ and $\nabla f(y_i) = u_i$ for $i = 1, \ldots, k$.
- **2.** For all $i, j \in \{1, ..., k\}$,

$$\frac{mL}{2(L-m)} \left(\|y_i - y_j\|^2 + \frac{1}{mL} \|u_i - u_j\|^2 - \frac{2}{L} (u_i - u_j)^\mathsf{T} (y_i - y_j) \right)$$

$$\leq u_i^\mathsf{T} (y_i - y_j) - (f_i - f_j)$$

Valid inequalities: $\Pi(\Lambda) := \sum_{i,j} \lambda_{ij} \Pi_{ij} \ge 0$.

Lyapunov with inputs

- Our system has inputs, i.e. $x_{k+1} = f(x_k, u_k)$.
- Inputs are result of feedback: $u_k = \nabla f(y_k)$.
- Interpolation conditions state that $\Pi(\Lambda) \geq 0$.
- Use S-procedure; instead, find Λ such that

$$V(f(x,u)) + \Pi(\Lambda) \leq \rho^2 V(x) \quad \text{for all } x,y,u$$

• Since $\Pi(\Lambda) \geq 0$, this implies $V(f(x,u)) \leq \rho^2 V(x)$.

Higher lifting dimension means more interpolation conditions, and potentially less conservatism.

Efficiency

- Use $V(x) = x_k^{\mathsf{T}} P x_k + p^{\mathsf{T}} f_k$; quadratic in algorithm state and linear in function values.
- Interpolation conditions $\Pi(\Lambda)$ are also quadratic in algorithm state and linear in function values.
- Search for Lyapunov function is a linear matrix inequality.
- Size does not depend on function domain dimension d.
- Size scales with lifting dimension ℓ .
- $\ell=1$ appears sufficient to compute best ρ bound.
- $\ell=4$ appears sufficient to compute best γ bound.

Given $(\alpha, \beta, \eta, m, L)$, can compute tightest possible bounds for (ρ, γ) in < 100 ms on a laptop.

Context

Connection to IQCs:

- Related to IQC approach for algorithm analysis [Lessard, Recht, Packard. 2016].
- A subset of $\Pi(\Lambda)$ corresponds to Zames–Falb IQCs.
- Results are similar when search is restricted to such Π .

Connection to PEP framework:

- Related to Performance Estimation Program [Taylor, Hendrickx, Glineur. 2017].
- Uses finite horizon performance instead
- Tight bounds, but LMI size depends on horizon length

Design challenges

- Not as straightforward as $Q_{m,L}$ case because we do not have an explicit function $(\alpha, \beta, \eta) \mapsto (\rho, \gamma)$.
- In principle, solution is a semialgebraic set.
- Optimality conditions yield polynomials of degree >200 that are not solvable analytically.

Challenge is to find algorithms that:

- Have relatively simple algebraic expressions. Avoid numerical solutions if possible.
- Are as close to being optimal as possible.

General strategy

- 1. Use numerical solver (e.g. Nelder–Mead) to find locally optimal (α, β, η) , e.g. fix ρ and minimize γ .
- **2.** Write LMI as polynomial optimization problem: convert semidefinite constraints into determinant inequalities.
- **3.** Substitute numerical solution to find active constraints and dual variables. At optimality, matrices in LMI will drop rank.
- **4.** Look for analytic solution to system of active constraints. Might require trying different elimination orderings.

Robust Accelerated Method (RAM)

Let $\rho \in \left[1-\sqrt{\frac{m}{L}},1\right)$. RAM is the 3-parameter algorithm

$$\alpha = \frac{(1+\rho)(1-\rho)^2}{m}, \qquad \beta = \rho \, \frac{L(1-\rho+2\rho^2)-m\,(1+\rho)}{(L-m)(3-\rho)},$$
$$\eta = \rho \, \frac{L(1-\rho^2)-m\,(1+2\rho-\rho^2)}{(L-m)(3-\rho)(1-\rho^2)}.$$

On the class $F_{m,L}$, RAM achieves $\rho_{\mathsf{RAM}} = \rho$.

Setting $\rho=1-\sqrt{\frac{m}{L}}$ recovers Triple Momentum.

For larger ρ , RAM is *near*-Pareto optimal

(ρ, γ) tradeoff for $F_{1,10}$.

(ρ, γ) tradeoff for $F_{1,100}$.

Simulation

RAM uses (α, β, η) . What if we use only Polyak or only Nesterov acceleration?

Nesterov and Polyak coverage for $F_{1,100}$.

Simulation

Nesterov's worst-case quadratic:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{L+m}{2} & \frac{L-m}{4} & 0 \\ \frac{L-m}{4} & \frac{L+m}{2} & \frac{L-m}{4} & \ddots \\ 0 & \frac{L-m}{4} & \frac{L+m}{2} & \ddots \\ & \ddots & \ddots & \ddots \end{bmatrix}$$

Lower bound (any algorithm):

$$||x_k - x^*|| \ge \left(\frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}}\right)^k ||x_0 - x^*||$$

- Quasi-Newton methods (BFGS, SR1)
- Nonlinear conjugate gradient
- Fast Gradient, Heavy Ball, Gradient descent

Nesterov worst-case, d=100, m=1, L=10, $\sigma=10^{-5}$.

Nesterov worst-case, d=100, m=1, L=10, $\sigma=10^{-2}$.

Thank you!

Preprint available: https://arxiv.org/abs/2109.05059

 Funding acknowledgement: NSF 1750162, 1936648

Backup Slides

Nesterov worst-case, d=100, m=1, L=10, $\sigma=10^{-5}$. Using piecewise constant ρ schedule.

