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In this talk:
® |terative algorithms can be viewed as robust controllers.
e Algorithms can be designed, in much the same way that
controllers can be designed.

® Controls and optimization!



Noisy oracle model

x* € argmin f(z)
z€R4

We can query a noisy oracle g(z) = Vf(z) + w,
where w is zero-mean and independent across queries.

Use cases:
® Must approximate Vf via finite differencing.
® Requires solving auxiliary optimization problem
numerically or simulating; inexact solutions.
® Empirical risk minimization in the context of learning;
evaluate expected value via sample-based approximations.



Gradient descent (GD)

Ti4+1 = Ty — 049(%)

Geometric phase
® Noise is small compared to gradient

® 1, makes rapid progress toward x*

Stationary phase
® Noise is comparable to gradient

® 1, moves randomly in a ball about z*



Random quadratic function: f(z) = 2"Qz, d = 10.
Eigenvalues satisfy 1 < A(Q) < 10.
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Random quadratic function: f(z) = 2"Qz, d = 10.
Eigenvalues satisfy 1 < A(Q) < 10.
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Acceleration

Polyak acceleration (Heavy Ball)
T =@ — ag(w) + (@ — 24-1)
Nesterov acceleration (Fast Gradient)

Y =+ B(ay — 24-1)
Tir1 = Yt — ag(yt)

e Similar geometric & stationary phases
® More parameters to tune

® Potentially better performance!
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Gradient method

Tpy1 = o — aVf(zy)

Heavy ball method

Tp1 =z — aVf (zx) + B(xp — Tp-1)

Nesterov's accelerated method

xy + B(x) — o)
Tpy1 = Yk — o Vf (yx)
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Performance metrics

Rate of convergence (p)
lz — 2*[| < (const) - p*

Smaller p means faster convergence (no noise regime).

Sensitivity to noise ()

hmsup E Zka — ¥ = +*

N—o00

Smaller v means more noise robustness (smaller ball).



Questions

How can we mediate the trade-off between speed and
robustness for accelerated algorithms?

Can we design algorithms that are Pareto-optimal for
different function classes? What will they look like?
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Outline

Algorithms as dynamical systems

Three-parameter family of algorithms

Quadratic functions
® Robust Heavy Ball

Strongly convex functions
® Robust Accelerated Method

Numerical validation
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Dynamical system interpretation

Heavy ball:  xp1 = 2 — aVf (k) + B(zr — 1)

Define uy := Vf(xy) and py := z5_4

=0 B[]

ye=1[1 0] m

Pk

A

ur = Vf(yr)




Dynamical system interpretation

Heavy ball:  xp1 = 2 — aVf (k) + B(zr — 1)

Define uy := Vf(xy) and py := z5_4

Ekp1 = A& + Buy,
yr = C&

\

U = Vf(yk)

A




3-parameter family

Yr = o + (21 — 24-1)
2t = Ty + n(xt — xt—l)

Tir1 = Yt — ozg(zt)

Generalization of Polyak and Nesterov acceleration:
® Recovers Gradient descent when 5 =1 = 0.
® Recovers Polyak acceleration when 1 = 0.

® Recovers Nesterov acceleration when n = .
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3-parameter family
Skr1 = [1 le b _Oﬂ & + {—Oa} Uy,
yp = [L+n —n] &

When designing algorithms, we can:
e Search over all (A, B,C') of a given size.

e Search over the specific parameterization («a, 3,7)
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Quadratic case ), 1.

Qm.1: Functions of the form f(z) = 27Qz
where ml; < Q) < Li,

® Heavy Ball (HB) achieves fastest possible rate,
when used with the tuning:
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Quadratic case ), 1.

Let f(y) = 5(y —v")TQ(y — v*).

Closed-loop map:
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Quadratic case ), 1.

(Tet1 — 2%) = (A + BQO)(zx, — 2*) + Bwy

® pis the rate of convergence when w;, =0
(spectral radius of A+ BQC).

® 12 is the squared Hy-norm of the system
(steady-state covariance).
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Quadratic performance

p= sup p(A + qBC).

q€[m, L]

If p <1, then

v* = sup o’d-(B'PB),

q€(m,L]
where P is the solution to

(A4 qBC)'P(A+¢BC) -~ P+C'C =0.

Both p and v are nonconvex functions of (A, B, C).
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Quadratic performance of 3-parameter algorithms

max
qge{m,L}

B —ang if A <0
%(W—i—l—aq—anq!—i—\/z) if A>0
where A := (8 +1 — aq — ang)® — 4(8 — ang).

If p <1, then

5 o?da(l+ B+ (1+2n)anq)
v* = max
geim.L} q(1 — B+ ang)(2+28 — (1 + 2n)aq)

Both are easy to evaluate and analyze!
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Robust Heavy Ball (RHB)

Vi
VL+ym’
a=L(1-p?  B=p°, =0

On the class ),,,,, RHB achieves

Let p € [ 1) . RHB is the 3-parameter algorithm

od 1—pt
= and Viug = — :
PRHB = P YRHB m2 (1+ p)*
3 _ VIL-ym :
Setting p = ~=—= recovers ordinary Heavy Ball.

VI+ym
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Strongly convex case [, |

F,, 1. Differentiable functions for which:
1. f(y) — im]ly||* is a convex function of y
2. |Vf(z) = V() < Lllz — y]| for all 2,y € R?

® Triple Momentum (TM) achieves fastest possible rate.

o= VL—/m 8= (VL—y/m)? _ (VL—ym)?
- L322 > T L+vmL = 2L—m++v'mL

¢ Fast Gradient (FG) is a popular choice.

§ = VI=ym VI-ym

&= VI+/m’ = Vitym

1
L
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Outline of approach for I,

lifted Simple Lyapunov
algorithm &
A
i performance
i bounds for p, vy
original Complicated
algorithm Lyapunov function

Lifting increases the number of variables but
allows use of a simpler Lyapunov function.



Lifted dynamics

Original system:

Y

Algorithm

Uy

A

Vf

Lifted system:

Yt

| Lifted
» | algorithm
’UJt._[ Vf
. -

state: z;

y.t state: x; =

Yt—e

Tt
Yt—1

Yt—e
Ut—1

Ut—p
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Lyapunov approach

Certifying a convergence rate
If 2141 = f(xx) and we can find a function V() satisfying

V(z) > ||z (positivity)
V(f(x)) < p*V(x) (decrease condition)

Then we have geometric decrease:

2k l]” < V(ag) < p°V(wgor) < - < p*FV (o)
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Lyapunov approach

Certifying sensitivity
If 11 = f(xk, wx) and we can find a function V' (z) satisfying

EV(z) >0 (positivity)
EV(f(z,w)) —EV(z) +E|z]* <+* (decrease)

Then we have bounded steady-state covariance:

N-1

EV(zy) —EV(z) +E) [a]* < Ny
k=0
1 N-1
— i —E 2 <y
imsup =B ln” <

k=0
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Interpolation

Interpolation in F,, ; (Taylor et al. 2017)

Let y1,...,yx €RYand uy,...,ur € R% and fi,..., fr €R.
The following two statements are equivalent.
1. There exists a function f € F,, 1, such that f(y;) = f;
and Vf(y;) = u; fori=1,... k.
2. Foralli,je{l,... ,k},

2(L o (||y, yill? + 2w — wyl? = 2 (wi — wy) " (yi — ;)
< (yi —y;) — (fi— )

Valid inequalities: H(A) = Ei,j Ainij 2 0.
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Lyapunov with inputs

Our system has inputs, i.e. x5 = f(zk, ug).

Inputs are result of feedback: ux = Vf(yx).
Interpolation conditions state that IT(A) > 0.
Use S-procedure; instead, find A such that

V(f(z,u) +TI(A) < p*V(x) forall z,y,u

Since TI(A) > 0, this implies V(f(z,u)) < p*V(z).

Higher lifting dimension means more interpolation
conditions, and potentially less conservatism.
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Efficiency

Use V(x) = z] Pxy + p' fi; quadratic in algorithm state
and linear in function values.

Interpolation conditions ITI(A) are also quadratic in
algorithm state and linear in function values.

Search for Lyapunov function is a linear matrix inequality.

Size does not depend on function domain dimension d.
Size scales with lifting dimension /.

¢ =1 appears sufficient to compute best p bound.

¢ = 4 appears sufficient to compute best v bound.

Given (a, B,m,m, L), can compute tightest possible
bounds for (p,7) in < 100 ms on a laptop.
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Context

Connection to IQCs:

® Related to IQC approach for algorithm analysis
[Lessard, Recht, Packard. 2016].

e A subset of II(A) corresponds to Zames—Falb IQCs.

® Results are similar when search is restricted to such II.

Connection to PEP framework:

® Related to Performance Estimation Program
[Taylor, Hendrickx, Glineur. 2017].

® Uses finite horizon performance instead

® Tight bounds, but LMI size depends on horizon length
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Design challenges

® Not as straightforward as (), 1, case because we do not
have an explicit function («a, 8,71) — (p, 7).
® In principle, solution is a semialgebraic set.

e Optimality conditions yield polynomials of degree > 200
that are not solvable analytically.

Challenge is to find algorithms that:

® Have relatively simple algebraic expressions. Avoid
numerical solutions if possible.

® Are as close to being optimal as possible.
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General strategy
1. Use numerical solver (e.g. Nelder-Mead) to find locally
optimal («a, 8,7), e.g. fix p and minimize 7.

2. Write LMI as polynomial optimization problem: convert
semidefinite constraints into determinant inequalities.

3. Substitute numerical solution to find active constraints
and dual variables. At optimality, matrices in LMI will

drop rank.

4. Look for analytic solution to system of active constraints.
Might require trying different elimination orderings.
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Robust Accelerated Method (RAM)

Let p € [1 -V 1). RAM is the 3-parameter algorithm

_ (4p)(1-p)* _ o L(=p+2p°)—m (14p)
=" P=r=—men
_  L(1=p*)—m(1+2p—p?)

=P T=m)B=p) 117

On the class £}, 1, RAM achieves pgapm = p-

Setting p=1— \/% recovers Triple Momentum.

For larger p, RAM is near-Pareto optimal
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(p,7y) tradeoff for [} 1.
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(p,7y) tradeoff for F} 100.
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Simulation
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Nesterov and Polyak coverage for F} 100.
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Simulation
Nesterov's worst-case quadratic:

L+m L—m
2 4 0
L—-m L+m L—m

V2f(l‘) — 4 2 4

0 L—m L+m

Lower bound (any algorithm):

VI—vim \* «
low =2l > (VERZ) llzo — o]

¢ Quasi-Newton methods (BFGS, SR1)
® Nonlinear conjugate gradient
¢ Fast Gradient, Heavy Ball, Gradient descent
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Nesterov worst-case, d = 100, m =1, L = 10, o = 107°.
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Nesterov worst-case, d = 100, m =1, L = 10, o = 107 2.
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Thank you!

® Preprint available:
https://arxiv.org/abs/2109.05059

® Funding acknowledgement:
NSF 1750162, 1936648
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Nesterov worst-case, d = 100, m = 1, L = 10, o = 107°.
Using piecewise constant p schedule.
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