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Abstract: We study the Kalman Filter for the linear elastic wave equation over the real line
with spatially distributed partial state measurements. The dynamics of the filter are described by
a spatial convolution operator with asymptotic exponential spatial decay rate. This decay rate
dictates how measurements from different spatial locations must be exchanged to implement
the filter: faster spatial decay implies local measurements are more relevant and the filter is
more “decentralized”; slower decay implies farther measurements also become relevant and the
filter is more “centralized”. Using dimensional analysis, we demonstrate that this decay rate
is a function of one dimensionless group defined from system parameters, such as wave speed
and noise variances. We find a critical value of such dimensionless group for which the Kalman

Filter is completely decentralized.
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1. INTRODUCTION

Kalman filtering of infinite dimensional systems has been
an active area of research for decades (see e.g., Curtain,
1975, for a review). More recent efforts have addressed
the question of sensor location selection for filtering error
variance minimization in distributed parameter systems.
For example, Zhang and Morris (2018) explored optimal
sensor placement and the trade-off between the number
of sensors and their quality, and Demetriou and Ucinski
(2011) proposed a simple real time guidance scheme for
mobile sensors used to enhance state estimation of a
spatially distributed process described by a linear Partial
Differential Equation (PDE). A related problem is that of
designing measurement methods for system identification
of PDEs (see Uciriski, 2005, for a monograph on the topic).

Our problem set-up is different. We are interested in the
state estimation problem for linear elastic wave dynamics
in which only displacement measurements are available
(i.e., with partial state information), but this measurement
is accessible over the whole spatial domain. We analyze
the information structures of Kalman filters in this setting
and further consider how plant’s parameters determine the
degree of spatial localization of the filter. The practical
relevance of this question includes e.g., to leverage modu-
lar embedded sensing, computation, and communication
for locomotion of soft robots through elastic intelligent

materials (see e.g., Correll et al., 2014; Kim et al., 2013),
and to better understand the role of proprioception in
the coordination for crawling locomotion of soft-bodied
organisms, which can be achieved by sustaining peristaltic
waves along their bodies (e.g., Pehlevan et al., 2016; Saga
and Nakamura, 2004; Tanaka et al., 2012).

Although the mentioned applications have finite spatial
extent, in this work we examine the wave equation over
an unbounded spatial domain. This assumption allows us
to derive analytic bounds on the asymptotic spatial decay
rate of the Kalman filter in terms of system parameters,
which in turn determines the information structures of the
filter. This may provide insight to observed behaviors in
finite spatial domain settings as the unbounded setting is a
useful idealization of the large but finite setting in certain
cases (see e.g., Tegling and Sandberg, 2017; Curtain et al.,
2010). Indeed, for certain problems it has been shown that
the solution to the finite extent problem with boundary
conditions is that of the spatially-invariant counterpart
plus a “correction term” at the edges (see Epperlein and
Bamieh, 2016).

In this work, we follow the Kalman filtering framework
introduced in (Balakrishnan, 1981, Ch. 6). Related works
include Lee et al. (2011), where the effect of modeling
error in the quality of the state prediction of the Kalman
filter for a linear wave equation is analyzed, and the



seminal work of Bamich et al. (2002) on optimal control
of spatially-invariant systems over L? spaces. Under mild
assumptions, Bamieh et al. (2002) showed that solutions
to operator Riccati equations with spatially-invariant coef-
ficients are spatially-invariant themselves. Hence, optimal
state estimator dynamics for spatially-invariant plants are
also spatially-invariant and described by a spatial con-
volution operator. The kernel of such convolution decays
exponentially in space. The work of Bamieh et al. (2002)
on spatially-invariant systems was extended beyond the L?
setting to the case of a Sobolev state space for LQR control
problems in Epperlein and Bamieh (2014) and Jensen et al.
(2020). Generalizations to the spatially-varying setting
include Motee and Jadbabaie (2008), which demonstrated
the spatial decay of optimal feedback operators for the
class of spatially decaying plants. The Kalman filtering
problem for spatially-invariant plants has also attracted
some attention: Henningsson and Rantzer (2007) studied
scalable distributed implementations of the Kalman filter
for a finite-dimensional circulant mass-spring system, and
Arbelaiz et al. (2020) characterized how the statistical
properties of the noise define the spatial localization of
the Kalman filter for a spatially-invariant diffusion process
over the real line.

In this work, we build upon insights from Jensen et al.
(2020) and Arbelaiz et al. (2020) to charaterize how
plant’s parameters define the information structures of
the Kalman filter for an elastic wave equation. Through
dimensional analysis, we determine a single dimensionless
parameter that completely characterizes the universal spa-
tial decay rate of the Kalman Gain in our setting and
identify a critical value of this parameter for which the
filter becomes completely decentralized.

The paper is organized as follows. Section 2 introduces
notation and mathematical background necessary to follow
our exposition. The plant and formulation of the Kalman
filtering problem are presented in Section 3, after a brief
prelude to dimensional analysis. The main result on the
spatial localization of the Kalman filter is provided in
Section 4. Our results and conclusions are discussed in
Section 5.

2. NOTATION & MATHEMATICAL PRELIMINARIES

Let H and H’ denote two Hilbert spaces. We denote the
space of linear operators from H to H' by L£(H, H') and
write L(H,H) = L(H). The domain of A € L(H,H') is
denoted by D(A) C H and the adjoint of A is the operator
At € L(H', H) that satisfies

for all f € D(A) and all g € D(AY). A is self-adjoint if

D(A) = D(A") and A = AT. This somewhat non-standard

notation is used to distinguish adjoints from the matrix

complex conjugate transpose, which we denote by (-)*.

A€ L(H,H') is bounded if || A|| := sup ||Af] g is finite.
If

lp=1

Spatio-temporal Signals: We consider a spatially
distributed system over the unbounded spatial domain
R, whose dynamics are described using (possibly vector-
valued) spatio-temporal signals ) = ¥(x,t), with € R the

spatial variable and ¢ € [0, 00) the temporal variable. For
each t, ¥(-,t) is an element of a Hilbert space. Denoting
P(t) := (-, t), ¥ can be thought of as a Hilbert space
valued temporal signal. For the problem of interest, such
temporal signals take values in one of the following two
Hilbert spaces (or Hilbert direct sums of these spaces):

e L2(R) denotes the set of square-integrable functions
from R to C™ equipped with the inner product

F iz = | o f@d @)

e For a > 0, H,(R) denotes the Sobolev space of weakly
differentiable functions from R to C equipped with the
inner product

o Du.w =D 2wy + a® (9, f, g)2wm  (3)

To simplify notation, we often write L? = L2(R) and
Ho = Ho(R). We denote the spatial Fourier transform
of spatio-temporal signals using hats:

delt) = FO0 = o [

where k € R is the spatial frequency. For vector-valued
signals, the transform is defined component-wise. It is well
known (Plancherel Theorem) that the Fourier transform
is an isometric isomorphism from L? to itself, i.e.,

<fag>L2(R) = <fag>L2(R)~ (5)

More generally, the Fourier transform is an isometric
isomorphism from Sobolev spaces, such as H,, to weighted
L? spaces.

Definition 1. For W : R — C™*™ with W (k) nonsingular
for each k, define the weighted L? space, Ly, by the inner
product

P(x, t)e_””kd;zc7 (4)

(F.d)y,, = [ Frwmatiae.  ©)
€
W is the spatial frequency weighting function of Lyy.

The following result follows from e.g. Epperlein and
Bamieh (2014).
Proposition 2. The Fourier transform is an isometric iso-

morphism from the Sobolev space Hq(R) to Ho(R) = Ly,
the weighted L? space defined by the spatial frequency
weighting function

w(as k) =1+ a’k?, @
e (f,9)n.m®) = <f7§>7;a(m~

It follows from Proposition 2 that if 4 (t) = ¢(-,t) is an
L? (vesp. M) valued signal, then ) (t) = (-, t) is an L2
(resp. Ho) valued signal. Tt is straightforward to extend
to signals that are in Hilbert space direct sums of such
spaces.

Spatially-Invariant Operators: Let H and H' denote
two Hilbert spaces given by L2, H,, or direct sums of these
two spaces.

To each z € R, define the associated translation by z
operator by (T, f)(x) = f(z—=2). A € L(H, H') is spatially-
inwvariant if it commutes with all translation operators, i.e.

T.|payA = AT.|p(a), for all z € R,



with T.[pca) denoting the restriction of the translation
operator T, to the domain of A.

Example 3. An operator A of the form
(AN = [ a©f- o (®)
£ER

is spatially-invariant. Here a is the convolution kernel of
A. Allowing a to include generalized functions, e.g. dirac
deltas and their derivatives, differential operators may be
written in form (8).

Definition 4. The convolution kernel a decays exponen-
tially if a(x)e?1*! — 0 as |z| — oo for some B > 0. We call
the largest of such 8 the decay rate of the corresponding
operator A.

A spatially-invariant operator A is “diagonalized” by
the spatial Fourier transform in the sense that FAF !
is a multiplication operator, that is, (]—'A]—'_lf)(k)
A(k)f(k). We refer to A as the symbol of the operator
FAF~'. When A is of the form (8), this symbol A is the
Fourier transform of the convolution kernel a of A:

Ay = \/7/ ek, (9)

With some abuse of notation we often use A to denote
the operator FAF~! as well. Moreover, under certain
conditions, the decay rate of A can be determined through

the region of analyticity of its symbol A according to the
following theorem.
Theorem 5. (adapted from Hormander (2015)). An exten-
sion of the symbol of a multiplication operator A to the
complex plane, denoted by Ae"t, is constructed by replac-
ing each k in A(k) by (—iz) with z € C, to give A®*t(z).
Let n > 0. If A®t g analytic and satisfies a polynomial
growth bound on the strip

Ty= {2€C [R()| <n}= (—nm)+iRCC,
then A = F~YAF has decay rate 3 for any 8 < 1.

A spatially-invariant operator A is self-adjoint if and only
if A = (FAF') is, and the operator norm satisfies
| Al = ||A]|. Symbols of adjoints of interest are stated in
the following proposition, which follows from Epperlein
and Bamieh (2014).

Proposition 6. Let A € L(Ly, Lw) be a multiplication op-
erator between two weighted L? spaces. Then the adjoint
of A is also a multiplication operator, with symbol given
by Af(k) =V (k)" A(k)*W (k).

3. PROBLEM FORMULATION

This work is concerned with the Kalman filtering problem
for the elastic wave equation in an unbounded spatial
domain with partial and noisy state measurement:

8%p ,0?
5 Pty =c (T];(“” t) +d(z,t), (10a)
y(z,t) = p(x,t) + n(z, ), (10b)

with t > 0, z € R, and ¢ > 0 denotes the wave speed. The
displacement p, process disturbance d, noisy measurement
y, and measurement noise n are each spatio-temporal
signals. We write (10) in state space form ! as

1 Note that this choice of state space representation is non-unique.

A1) L) o
u(t) =11 01| 0 | + oo

We focus on the case that d and n are white noise mutually
independent processes, as formalized in (Balakrishnan,
1981, Ch. 6), with covariance operators

Rg=02%-T and R, =02

n

(11)

respectively.
0 I .
The operator 292 0 generates a Cp-semigroup of op-

erators on the Hilbert space X, := Ho(R) ® 2L?*(R), for
any choice of @ > 0, and its domain

D(L?Oag éD - { [m € Xai f1, 1 GLQ(R)}

is dense in X,. The corresponding measure of the state is

I[fsin |11 = et

The parameter a determines the relative penalty between
the first state component and its spatial derivative.

2
(0%
Zz +e*10zp(®)17: + zl19pll7e.

8.1 Dimensional Analysis

Before the formulation of our main result, we non-
dimensionalize the plant. This will allow us to group the
different parameters of the problem in a smaller number of
dimensionless parameters, easing sensitivity analysis and
interpretation of the results. Since « sets a lengthscale and
¢ sets a speed, we define the dimensionless spatial (x) and
temporal (7) variables:

C

1
X :=—z and 7:= —t. (13)
a a

Noting also that o,, has the same dimension as the state
and o4 has dimensions of state per squared time, we define
the dimensionless disturbance and noise signals

2 1
B(r) = Sy()

c
Then the non-dimensional counterpart of the dynamics
(11) are

(14)

p(r) and ~(7):=

i %] = [ o] 50 ]+ [7] o 39
10 =[5 0] [ 250 |+, s

where 7, is the dlmejl:scionless parameter
e = ;Z’; >0 (16)

p = 1 ~d and 7 := -n are mutually independent white
noise processes w1th 1dent1ty covariance operators.

The Sobolev norm on the transformed state is non-
dimensionalized accordingly as

( 2_ 2 2 2
|[ ()}n 162, + 10x(r) 2 + 185 22,



i.e. the nondimensional state ¥(7) = [¢(7) (9T¢>(7')]T €
X' := H; @ L?. A generates a Cy-semigroup on X”’, and
B € L(L? X") and C € L(X',H1) are bounded operators.

From (15b) we see that m, admits physical interpretation
as the noise-to-signal ratio in the non-dimensional obser-
vations: the smaller 7., the higher the signal content in
the measurement compared to the noise.

3.2 Kalman Filtering

The Kalman Filtering problem of interest is to characterize
the steady-state dynamics of the state estimate

P(r) =E[(r) | {v(s)is < 7}].

It is straightforward to confirm? exponential stabilizabil-
ity of (A4, B) and exponential detectability of (A, C). We
may then derive the state estimator dynamics by following
the framework of (Balakrishnan, 1981, Sec. 6.8). Defining

the (nondimensional) estimation error

(17)

e(t) == (t) — P(t), (18)
the dynamics of the estimate (17) are given by
d -~ -
2 ¥(1) = (A= LOW(7) + Ly(7) (19)
where the operator
L:= PCT (20)
is the Kalman Filter Gain and the operator
P = lim E[e(r)e(T)"] (21)
T—00

is the self-adjoint, positive definite solution to the infinite
dimensional algebraic Riccati equation (ARE)
0= (Ph, A'¢) + (A'h, Pl) + (BB'h, () — (PCTCPh, (),
(22)
where ¢, h € D(AT) and (-,-) is the inner product on &”.
Proposition 7. The Kalman Filter Gain L is a spatially-
invariant operator. In the nondimensional spatial fre-
quency domain it is represented by a multiplication op-
erator with symbol

i, = [ 2me Lo (k) (23)
Lo()
where
Lo(k) = —mer® + /7264 + K2+ 1, (24)

and k := ak is the nondimensional spatial frequency.

Proof. See Appendix.

Remark 8. The dimensional Kalman Gain, which corre-
sponds to the dynamics of the estimate of the original

dimensional state [p 5tP]T
c 1 0 =
QT [0 (c/a)] L.

4. SPATTAL LOCALIZATION OF THE KALMAN
GAIN FOR THE ELASTIC WAVE EQUATION

, can be recovered from L as:

Ap = (25)

The Fourier transformed dynamics of the Kalman Filter
(19) are decoupled in &:

2 A formal definition of exponential stabilizability and detectability
can be found in e.g. Curtain and Zwart (2020) and a method for
checking stability, stabilizability and detectability in the spatially-
invariant setting is provided in Epperlein (2014).

W (7) = (A~ LeCibulr) + Euinl).
By the convolution theorem, the pointwise multiplication
E,.fy,.@ transforms to a spatial convolution in the physical
domain. Hence, the spatial decay rate of the kernel L
dictates how measurements must be exchanged within the
system to implement the filter: if the spatial decay of L
is fast, at each spatial location measurements from its
neighborhood are more relevant for the filter than those
further away; if slow, measurements from further away
become relevant as well. Under mild assumptions, Bamieh
et al. (2002) proved that L decays at least exponentially
in space, which implies that the Kalman Filter has an
inherent degree of spatial localization and is suitable for a
distributed implementation.

(26)

In this section we study the effect of system’s parameters
on the spatial decay rate of the Kalman Filter Gain
(20), that is, how the interplay between the parameters
determines the level of spatial localization of the filter.

Theorem 9. Consider the Kalman Filter (19) for the linear
elastic wave equation and observations (15) perturbed by
white noise. The universal spatial decay rate S of the
Kalman Filter Gain in this setting is

1 1
A1 —+/1—472 if0< 7, < =
V27, ¢ 2

=11 i . ’
——\[Te + = if me > =
NGO 2 2
where 7, is the dimensionless parameter defined in (16).
At the critical value 7} = % the Kalman filter is completely
decentralized.

(27)

Proof. We derive the spatial decay rate of the Kalman
Filter Gain by applying Theorem 5 (Paley-Wiener) to our
problem set-up. We start by analyzing the decay of L.
Define the extension of (24) by:

Le (z;me) = mez? 4+ /m224 — 22 41, z € C. (28)
The region of the complex plane in which (28) is analytic
is determined by its branch points. These are given by

the branch points of the square root component, namely
|200| = 00 and the roots

w2t =22 1=0. (29)
The branch points z; (i € {1,2,3,4}) from (29) are
parametrized by 7. and given by:
L b
V2,

1+ /1 4r2
zi(me) = 1

1 1 1
— | £ -+ — =) if —.
\/§7Te< \/We+2 Z\/Tl'e 2)1 7Te>2

(30)
The z;’s are real and distinct for 0 < =w, < 1/2
and for m, > 1/2 they are complex conjugates. 7} =
1/2 is a critical value at which branch points collapse
pairwise in the real axis (see Fig. 1). Substitution of

75 = 1/2 in (24) yields Lo(k;n?) = 1. That is, at 7
the convolution kernel of the Kalman Filter Gain is a
Dirac ¢ distribution and the Kalman filter is completely
decentralized: at a particular spatial location x, only the
measurement from y is required to implement the filter.
The widest analyticity strip I'g (see Theorem 5) that can

be defined for the extension (28) corresponds to 8 :=

1
if 0 < me < =,
1 Yy D)




mine gy 23,43 |R[2i(7e)]|. Defining 3 as the decay rate of Lg
yields (27). A similar calculation reveals that the extension
of the remaining component of the dimensionless Kalman
Filter Gain, namely /27, Lo, has the same analyticity strip
of Lg. Thus, we refer to 5 as the universal spatial decay
rate of the Kalman Filter Gain. O

1 140

3 20 ¢
& s
1! 0
2 -1 0 1 2
R(z)

Fig. 1. Trajectories of the branch points (30) in the complex plane
as e varies — Branch Point Locus, as introduced in Arbelaiz
et al. (2020). Trajectories are color-coded according to the value
of me indicated in the colorbar. Arrows indicate the direction
of increasing m. to guide the eye.

We highlight the peculiar structure of the Kalman Filter
Gain. We note that
K2 +1 1
i+ R2 41 27
(31)
which shows that the kernel of the Kalman Gain in space
consists of a superposition of a Dirac ¢ distribution with an
exponentially decaying component (see Fig. 2), the Fourier
transform of the latter being

lim Lo(k) = lim
|k|—00 0( ) |k|—00 7TE[§2-|-

<0ifm <1/2,
=0if 7y =1/2,
>0 if me > 1/2.
At the critical value 7} = 1/2, the exponentially decaying
component of the convolution kernel flips sign and has zero
amplitude (see Fig. 2). Hence, only the delta component
remains, which explains the emergence of a completely
decentralized Kalman Filter.

Tek? + 27, —

27 (Tek? +

w2kt + K241

[A/exp _
0 m2rt + K2 4+ 1)

5. DISCUSSION, CONCLUSION & FUTURE WORK

Discussion. At the critical value 7} the Kalman Filter is
completely decentralized, that is, the quality of the state
estimate does not improve by accessing neighboring mea-
surements. A similar phenomenon was reported in Kalman
filters for diffusion processes with spatially correlated mea-
surement noise (see Arbelaiz et al., 2020, Section IV.A).
Indeed, in our problem set-up the Sobolev weight w(«; k)
as defined in (7) can be effectively thought of as spatially
correlated measurement noise, with correlation length a.
To see this, define the effective power spectral density of
the measurement noise

R = Ry /wy. (32)
éﬁf; is a spatially low-pass filtered version of Rnﬁ (i.e.,

N is exponentially autocorrelated in space). Substitution
of (32) in the ARE (35) yields

0 e L) LK
0 I
Z:/ 1 -1
>
0 — o 3
0 520 0 20710 0 10 ]
1.5 ) : X o Te= 3
= o
R &
N
&
= 05/ 5
;1 R(z)
R
R=py
Ch) .
Y] T
b oS
Il
r ‘-]-zu 0 20
0.5F o5 LK) o. Ly(X) | ) K
—~ 0.4
Do 1 =
@ 0.2 5 !
0.5 0 0 AN
ER(” ) -20 ;é 20 -10 0 10 L a—
z
0 A
0 0.5 1 1.5 2
Te

Fig. 2. (Central panel) Universal decay rate 8 of the Kalman Gain
as a function of m. as defined in (27). (Side panels) Branch
points & analyticity strip, Lo(x) as given in (24), and Lo (x)
for different values of me: (top, in green) me = 1/4; (right, in
orange) ) = 1/2; (bottom, in blue) 7. = 1.

Al 1, A+ BB a1, = o
with the corresponding Kalman Gain L, = IL,C;: (R&E ) 2.

We remark that the choice of state and realization (11) for
the wave equation is not unique. In applications such as
H; output feedback control then, there may be advantages
to choosing one realization over another for the state esti-
mate, as long as the filtering problem remains well-posed.
Choosing a realization for a “more localized” estimator
could lead to more localization of the overall control policy.

Conclusion. We analyzed the Kalman Filter for an elastic
wave equation with partial state observations over the
real line. Using dimensional analysis and a Paley-Wiener
theorem, we characterized the universal asymptotic spatial
decay rate of the Kalman Gain, proving that it is deter-
mined by a unique dimensionless parameter defined from
the physical parameters of the plant. We found that certain
parameter regimes yield a totally decentralized Kalman
Filter.

Future Work. Ongoing work includes the characterization
of the Kalman Filter performance as a function of the
spatial localization of the Kalman Gain, and in particular
analysis of performance corresponding to the critical pa-
rameter value m;. We also aim to impose strict decentral-
ization constraints using techniques from Arbelaiz et al.
(2021) or perhaps convex relaxations inspired by (Jensen,
2020, Ch. 5) to design Kalman Filters with information
constraints. Following this alternate approach and charac-
terizing the performance gap between these two problems
is part of our ongoing work. Study of the finite spatial
domain setting as a step towards analysis of crawling
locomotion and other applications is another line of future
work.
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APPENDIX: PROOF OF PROPOSITION 7

Spatial invariance of A, B,C imply (see Bamieh et al.,
2002) that the solution P of the ARE (22) is a spatially-
invariant operator and thus, so is the Kalman Filter Gain
L (20). By Propositions 2 and 6 the ARE (22) may be
written in the spatial frequency domain:
0 =(Ph, A10) + (ATh, PO + (BBh, i) —

(PCTCPh, i
(33)

for all Z,h € D(AY), where (-,-) denotes the inner product

on the weighted L? space Ly with spatial frequency

weighting function W, = W(k) = 1 —B"{ O] Expanding
out these inner products, (33) becomes

0= / UWoF(k)hy dr, for all §,h € D(AT), (34)
KER

where F (k) := AP, + IADKAL + BHBL - IAD,.QCA'ECA',J—:’,.C As
D(AL) is dense in X' and W, is invertible for all ,
(34) holds if and only if F(x) = 0. Computing adjoint
symbolb using Propomtlon 6 and defining a new variable
I, = I1* = P,W, ! = 0, F(k) = 0 is equivalent to:

AL AT, A% + BB —TL,C5(1 + k)CIl, = 0. (35)

Thus the operator Riccati equation (33) holds if and only if
the family of matrix Riccati equations (35) parameterized

by & hold. Solving explicitly for II,, = {Hl HO} we obtain
Iy Iy
. —72K2 o 2
H € €
or) = 1—&-/@2+\/(1—|—/~€2)2—'_1—&—,%27
. 272 . . 1+ kK
H1 (I’i) 1+ r B} 1_[07 H2 H1 (K} + HO 2 ) .

The Fourier symbol of the corresponding Kalman gain is
L., = 11,C (1 + k?), which can be written as (23).



