
Optimal State-Feedback Control Under

Sparsity and Delay Constraints

Andrew Lamperski1 Laurent Lessard2

3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems
(NecSys) pp. 204–209, 2012

Abstract

This paper presents the solution to a general decentral-
ized state-feedback problem, in which the plant and con-
troller must satisfy the same combination of delay con-
straints and sparsity constraints. The control problem
is decomposed into independent subproblems, which are
solved by dynamic programming. In special cases with
only sparsity or only delay constraints, the controller re-
duces to existing solutions.

Notation

y0:t Time history of y: {y0, y1, . . . , yt}.
a→ b Directed edge from node a to node b.
dij Shortest delay from node j to node i.
Msr Block submatrix (Mij)i∈s,j∈r, e.g.M11 M12 M13

M21 M22 M23

M31 M32 M33

{2,3},{1} =

[
M21

M31

]
.

1 Introduction

This paper studies a class of decentralized linear
quadratic control problems. In decentralized control, in-
puts to a dynamic system are chosen by multiple con-
trollers with access to different information. In this work,
the dynamic system is decomposed into subsystems, each
with a corresponding state and controller. A given con-
troller has immediate access to some states, delayed ac-
cess to some others, and no access to the rest. Since
some controllers cannot access certain state components,
the transfer matrix for the overall controller must satisfy
sparsity constraints.

While decentralized synthesis is difficult in general,
some classes of problems are known to be tractable and
can be reduced to convex, albeit infinite dimensional, op-
timization problems. See [3] and [5]. These papers also

1A. Lamperski is with the Department of Control and Dynamical
Systems at the California Institute of Technology, Pasadena, CA
91125 USA. andyl@cds.caltech.edu

2L. Lessard is with the Department of Automatic Control at Lund
University, Lund, Sweden. laurent.lessard@control.lth.se
The second author would like to acknowledge the support of the
Swedish Research Council through the LCCC Linnaeus Center

suggest methods for solving the optimization problem.
The former gives a sequence of approximate problems
whose solutions converge to the global optimum, and
the latter uses vectorization to convert the problem to
a much larger one that is unconstrained. An efficient
LMI method was also proposed by [4].

The class of problems studied in this paper have par-
tially nested information constraints, which guarantees
that linear optimal solutions exist, [1]. Explicit state-
space solutions have been reported for certain special
cases. For state-feedback problems in which the con-
troller has sparsity constraints but is delay-free, solutions
were given in [6], and [7]. For state-feedback with delays
but no sparsity, a special case of the dynamic program-
ming argument of this paper was given by [2].

In Sections 2 and 3, we state the problem and explain
the state and input decomposition we will use. Main
results appear in Section 4, followed by discussion and
proofs.

2 Problem Statement

In this paper, we consider a network of discrete-time lin-
ear time-invariant dynamical systems. We will illustrate
our notation and problem setup through a simple ex-
ample, and then describe the problem setup in its full
generality.

Example 1. Consider the state-space equationsx1t+1

x2t+1

x3t+1

 =

A11 A12 0
A21 A22 0
A31 A32 A33

x1tx2t
x3t


+

B11 B12 0
B21 B22 0
B31 B32 B33

u1tu2t
u3t

+

w1
t

w2
t

w3
t

 (1)

For quantities with a time dependence, we use subscripts
to specify the time index, while superscripts denote sub-
systems or sets of subsystems. Thus, xit is the state of
subsystem i at time t. The uit are the inputs, and the
wit are independent Gaussian disturbances. The goal is
to choose a state-feedback control policy that minimizes

1

1 2 3

0 0 0

1

1

0

Figure 1: Network graph for Example 1. Each node rep-
resents a subsystem, and the arrows indicate the sparsity
of both the dynamical interactions (1) as well as the infor-
mation constraints (3). Additionally, the labels indicate
the propagation delay from one controller to another.

the standard finite-horizon quadratic cost

E
T−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

]
+ xTTQfxT (2)

with the usual requirement that R is positive definite,
while Q − SR−1ST and Qf are positive definite. Also,
different controllers may have access to different infor-
mation. For the purpose of this example, suppose the
dependencies are as follows

u1t = γ1t
(
x10:t, x

2
0:t−1

)
u2t = γ2t

(
x10:t−1, x

2
0:t

)
u3t = γ3t

(
x10:t−1, x

2
0:t, x

3
0:t

) (3)

Note that there is a combination of sparsity and delay
constraints; some state information may never be avail-
able to a particular controller, while other state informa-
tion might be available but delayed. It is convenient to
visualize this example using a directed graph with labeled
edges. We call this the network graph. See Fig. 1.

Note that in Example 1, both the plant (1) and the con-
troller (3) share the same sparsity constraints. Namely,
x3 does not influence x1 or x2 via the dynamics, nor can
it affect u1 or u2 via the controller. This condition will
be assumed for the most general case considered herein.
As explained in Appendix A, this condition is sufficient
to guarantee that the optimal control policy γit is linear,
a very powerful fact.

A quantity of interest in this paper is the delay matrix,
where each entry dij is defined as the sum of the delays
along the fastest directed path from j to i. If no path
exists, dij =∞. In Example 1, the delay matrix is:

d =

0 1 ∞
1 0 ∞
1 0 0

 (4)

This particular delay matrix only contains 0’s, 1’s, and
∞’s, but for more intricate graphs, the delay matrix can
contain any nonnegative integer, as long as it is the total
delay of the fasted directed path between two nodes.

General Case. In general, we consider any directed
graph G(V,E) with vertices V = {1, . . . , N}. Every such
edge is labeled with dij ∈ {0, 1}. We refer to this graph
as the network graph. We then define dij for all other
pairs of vertices according to the fastest-path definition
above. We consider systems defined by the state-space
equations:

xit+1 =
∑
j∈V
dij≤1

(
Aijx

j
t + Biju

j
t

)
+ wit for all i ∈ V (5)

The initial state x0 can be fixed and known, such as
x0 = 0, or it may be a Gaussian random variable. Note
that the Aij denote matrices, which can be viewed as
submatrices of a larger A matrix. If we stack the various
vectors and matrices, we obtain a more compact repre-
sentation of the state-space equations:

xt+1 = Axt +But + wt (6)

where A and B have sparsity patterns determined by
the dij . Namely, we can have Aij 6= 0 whenever dij ∈
{0, 1} and similarly for Bij . This fact can be verified in
Example 1 by comparing (1) and (4).

We assume the noise terms are Gaussian, IID for all
time, and independent between subsystems. In other
words, we have E(wiτw

k T
t) = 0 whenever τ 6= t or i 6= k,

and E(witw
iT
t) = Wi for all t ≥ 0.

State information propagates amongst subsystems at
every timestep according to the graph topology and the
delays along the links. Each controller may use any state
information that has had sufficient time to reach it. More
formally, uit is a function of the form

uit = γit(x
1
0:t−di1 , . . . , x

N
0:t−diN). (7)

Here if t < dij (e.g. when dij = ∞), then uit has no
access to xj at all. As a technical point, we assume that
G contains no directed cycles with zero length. If it did,
we could collapse the nodes of that cycle into a single
node.

The objective is to find a control policy that satis-
fies the information constraints (7) and minimizes the
quadratic cost function (2). According to our formula-
tion, the controller may be any function of the past in-
formation history, which grows with the size of the time
horizon T . However, we show in this paper how to con-
struct an optimal controller that is linear and has a finite
memory which does not depend on T .

3 Spatio-Temporal Decomposition

The solution presented herein depends on a special de-
composition of the states and inputs into independent
components. In Subsection 3.1, we define the information
graph, which describes how disturbances injected at each

2

w1 w2 w3

{1} {2, 3} {3}

{1, 2, 3}

Figure 2: The information graph for Example 1. The
nodes of this graph are the subsets of nodes in the net-
work graph (see Fig. 1) affected by different noises. For
example, w2 injected at node 2 affects nodes {2, 3} im-
mediately, and affects {1, 2, 3} after one timestep.

Node 1 · · · w1
t−3 w1

t−2 w1
t−1 w1

t

Node 2 · · · w2
t−3 w2

t−2 w2
t−1 w2

t

Node 3 · · · w3
t−3 w3

t−2 w3
t−1 w3

t

Time

{1}{1, 2, 3}

{2, 3}

{3}

Figure 3: Noise partition diagram for Example 1 (refer to
Fig. 1 and 2). Each row represents a different node of the
network graph, and each column represents a different
time index, flowing from left to right. For example, w2

t−2
will reach all three nodes at time t, so it belongs to the
label set {1, 2, 3}.

node propagate throughout the network. Then, in Sub-
section 3.2, we show how the information graph can be
used to define a useful partition of the noise history. Fi-
nally, Subsection 3.3 explains the decomposition of states
and inputs, which will prove crucial for our approach.

3.1 Information Graphs

The information graph a useful alternative way of repre-
senting the information flow in the network. Rather than
thinking about nodes and their connections, we track the
propagation of the noise signals wi injected at the vari-
ous nodes of the network graph. The information graph
for Example 1 is shown in Fig. 2.

Formally, we define the information graph as follows.
Let sjk be the set of nodes reachable from node j within
k steps:

sjk = {i ∈ V : dij ≤ k}.

The information graph, Ĝ(U,F), is given by

U = {sjk : k ≥ 0, j ∈ V }
F = {(sjk, s

j
k+1) : k ≥ 0, j ∈ V }.

We will often write wi → s to indicate that s = si0,
though we do not count the wi amongst the nodes of the
information graph, as a matter of convention.

The information graph can be constructed by tracking
each of the wi as they propagate through the network
graph. For example, consider w2, the noise injected into
subsystem 2. In Fig. 1, we see that the nodes {2, 3} are
affected immediately. After one timestep, the noise has
reached all three nodes. This leads to the path w2 →
{2, 3} → {1, 2, 3} in Fig. 2. When two paths reach the
same subset, we merge them into a single node. For
example, the path starting from w1 also reaches {1, 2, 3}
after one step.

Proposition 1. Given an information graph Ĝ(U,F),
the following properties hold.

(i) Every node in the information graph has exactly one
descendant. In other words, for every r ∈ U , there
is a unique s ∈ U such that r → s.

(ii) Every path eventually hits a node with a self-loop.

(iii) If d = maxij{dij : dij < ∞}, then an upper bound
for the number of nodes in the information graph is
given by |U | ≤ Nd.

Example 2. Fig. 4 shows the network and information
graphs for a more complex four-node network. We will
refer to this example throughout the rest of the paper.

Note that the information graph may have several con-
nected components. This happens whenever the network
graph is not strongly connected. For example, Fig. 2 has
two connected components because there is no path from
node 3 to node 2.

3.2 Noise Partition

The noise history at time t is the set random variables
consisting of all past noises:

Ht = {wiτ : i ∈ V, −1 ≤ τ ≤ t− 1}

where we have used the convention x0 = w−1. We now
define a special partition of Ht. This partition is related
to the information graph; there is one subset correspond-
ing to each s ∈ U . We call these subsets label sets, and
they are defined in the following lemma.

Lemma 2. For every s ∈ U , and for all t ≥ 0, define
the label sets recursively using

Ls0 = {xi0 : wi → s} (8)

Lst+1 = {wit : wi → s} ∪
⋃
r→s
Lrt . (9)

The label sets {Lst}s∈U partition the noise history Ht:

Ht =
⋃
s∈U
Lst and Lrt ∩ Lst = ∅ whenever r 6= s

3

1

2

3

4

0

0

0

0

1

1

1 0

1

(a) Network graph for Example 2

w1 w2 w3 w4

{1} {2} {3} {3, 4}

{1, 2, 3}

{1, 2, 3, 4}

{2, 3, 4}

(b) Information graph for Example 2

Node 1 · · · w1
t−3 w1

t−2 w1
t−1 w1

t

Node 2 · · · w2
t−3 w2

t−2 w2
t−1 w2

t

Node 3 · · · w3
t−3 w3

t−2 w3
t−1 w3

t

Node 4 · · · w4
t−3 w4

t−2 w4
t−1 w4

t

Time

{1}{1, 2, 3}{1, 2, 3, 4}

{2}{2, 3, 4}

{3}{3, 4}

(c) Noise partition diagram for Example 2

Figure 4: Network graph (a), information graph (b),
and noise partition diagram (c) for Example 2.

Proof. We proceed by induction. At t = 0, we have
H0 = {x10, . . . , xN0 }. For each i ∈ V , s = si0 is the unique
set such that xi0 ∈ Ls0. Thus {Ls0}s∈U partitions H0.
Now suppose that {Lst}s∈U partitions Ht for some t ≥ 0.
By Proposition 1, for all r ∈ U there exists a unique
s ∈ U such that r → s. Therefore each element wik ∈ Ht

is contained in exactly one set Lst+1. For each i ∈ V ,

we have that Ls
i
0
t+1 is the unique label set containing wit.

Therefore {Lst+1}s∈U must partition Ht+1.

The partition defined in Lemma 2 can be visualized
using a noise partition diagram. Example 1 is shown
in Fig. 3 and Example 2 is shown in Fig. 4(c). These
diagrams show the partition explicitly at time t by indi-
cating which parts of the noise history belong to which
label set. Each label set is tagged with its corresponding
node in the information graph.

3.3 State and Input Decomposition

We show in Appendix A that our problem setup is par-
tially nested, which implies that there exists an optimal
control policy that is linear. We also show there that xt
and ut are linear functions of the noise history Ht.

Individual components uit will not depend on the full
noise history Ht, because certain noise signals will not
have had sufficient time to travel to node i. This fact
can be read directly off the noise partition diagram. To
see whether a noise symbol wit−k ∈ Lst affects uit, we
simply check whether i ∈ s. We state this result as a
lemma.

Lemma 3. The input uit depends on the elements of Lst
if and only if i ∈ s. The state xit depends on the elements
of Lst if and only if i ∈ s.

The noise partition described in Subsection 3.2 induces
a decomposition of the input and state into components.
We may write:

ut =
∑
s∈U

IV,sϕst and xt =
∑
s∈U

IV,sζst (10)

where ϕst and ζst each depend on the elements of Lst . Here
I is a large identity matrix with block rows and columns
conforming to the dimensions of xit or uit depending on
the context. The notation IV,s indicates the submatrix
in which the block-rows corresponding to i ∈ V and the
block-columns corresponding to j ∈ s have been selected.
For example, the state in Example 1 can be written as:

xt =I0
0

ζ{1}t +

0 0
I 0
0 I

ζ{2,3}t +

0
0
I

ζ{3}t +

I 0 0
0 I 0
0 0 I

ζ{1,2,3}t

The vectors ζst each have different sizes, which is due to

Lemma 3. For example, x2t is only a function of ζ
{2,3}
t and

ζ
{1,2,3}
t , since these are the only label sets that contain 2.

We also use the superscript notation for other matrices.
Taking (1) as an example, if s = {3} and r = {2, 3}, then
Asr =

[
A32 A33

]
.

The state equations that define xt (5) have a counter-
part in the ζt coordinates. We state the following lemma
without proof.

Lemma 4. The components {ζst }s∈U and {ϕst}s∈U sat-
isfy the recursive equations:

ζs0 =
∑
wi→s

Is,{i}xi0 (11)

ζst+1 =
∑
r→s

(
Asrζrt +Bsrϕrt

)
+
∑
wi→s

Is,{i}wit (12)

Two important properties of the input and state de-
composition follow from results in this section. First,

4

each input uit is a function of a particular subset of
the information history Ht, which follows directly from
Lemma 3.

Corollary 5. The input uit depends on the elements of
∪s3iLst . In particular, uit has the ability to compute any
state ζst for which i ∈ s.

Secondly, Lemma 2 implies that the label sets for a
given time index consist of mutually independent noises.
So our decomposition provides independent coordinates:

Corollary 6. Suppose r, s ∈ U , and r 6= s. Then:

E
[
ζrt
ϕrt

] [
ζst
ϕst

]T
= 0

4 Main Results

Consider the general problem setup described in Sec-
tion 2, and generate the corresponding information graph
Ĝ(U,F) as explained in Section 3.1. For every node
r ∈ U , define the matrices Xr

0:T recursively as follows:

Xr
T = Qrrf

Xr
t = Qrr +AsrTXs

t+1A
sr −

(
Srr +AsrTXs

t+1B
sr
)
×(

Rrr +BsrTXs
t+1B

sr
)−1(

Srr +AsrTXs
t+1B

sr
)T

(13)
where s ∈ U is the unique node such that r → s. Finally,
define the gain matrices Kr

0:T−1 for every r ∈ U :

Kr
t = −

(
Rrr +BsrTXs

t+1B
sr
)−1(

Srr +AsrTXs
t+1B

sr
)T

(14)

Theorem 7. The optimal control policy is given by

ut =
∑
s∈U

IV,sϕst where ϕst = Ks
t ζ
s
t (15)

where the states ζst evolve according to (12). The corre-
sponding optimal cost is

V0(x0) =
∑
i∈V
wi→s

(
trace

(
(Xs

0){i},{i} E
(
xi0x

i
0

T))

+

T∑
t=1

trace
(

(Xs
t){i},{i}Wi

))
(16)

Theorem 7 describes an optimal controller as a func-
tion of the disturbances w. The controller can be trans-
formed into an explicit state-feedback form as follows.
For every s ∈ U , define the subset sw = {i : wi → s}.
This set will be a singleton {i} when the node is a root
node of the information graph, and will be empty oth-
erwise. For example, consider Example 2 (Fig. 4(b)).
When s = {3, 4} we have sw = {4}, and when s =

{2, 3, 4} we have sw = ∅. Each s ∈ U can be parti-
tioned as s = sw ∪ sw, where sw = s \ sw. The states of
the controller are given by

η
(s)
t = Isw,sζst for all s ∈ U satisfying sw 6= ∅

Theorem 8. Let Āsrt = Asr+BsrKr
t . The optimal state-

feedback controller is given by the state-space equations

η
(s)
0 = 0

η
(s)
t+1 =

∑
r→s

Isw,sĀsrt I
r,rwη

(r)
t

+
∑
r→s

Isw,sĀsrt I
r,rw

(
xrwt −

∑
v⊃r
v 6=r

Irw,vwη
(v)
t

)
(17)

ut =
∑
s∈U

IV,sKs
t I
s,swη

(s)
t

+
∑
s∈U

IV,sKs
t I
s,sw

(
xswt −

∑
v⊃s
v 6=s

Isw,vwη
(v)
t

)
(18)

See Section 6 for complete proofs of Theorems 7 and 8.

5 Discussion

Note that for a self-loop, r → r, (13) defines a classical
Riccati difference equation. Since the information graph
can have at most N self-loops, at most N Riccati equa-
tions must be solved. For other edges, (13) propagates
the solution of the self-loop Riccati equation down the
information graph toward the root nodes.

The solution extends naturally to infinite horizon, pro-
vided that at the self-loops, r → r, the matrices satisfy
classical conditions for stabilizing solutions to the corre-
sponding algebraic Riccati equations. Indeed, as T →∞,
Xrr
t approach steady state values. Since all gains are

computed from the self-loop Riccati equations, the gains
must also approach steady state limits.

The results can also be extended to time-varying sys-
tems simply by replacing A, B, Q, R, S, and W with At,
Bt, Qt, Rt, St, and Wt, respectively.

The results of [7] and [6] on control with sparsity con-
straints correspond to the special case of this work in
which all edges have zero delay. In this case, the infor-
mation graph consists of N self-loops. Thus, N Riccati
equations must be solved, but they are not propagated.

The results on delayed systems of [2] correspond to
the special case of strongly connected graphs in which
all edges have a delay of one timestep. Here, all paths
in the information graph eventually lead to the self-loop
V → V . Thus, a single Riccati equation is solved and
propagated down the information graph.

5

6 Proofs of Main Results

6.1 Proof of Theorem 7

The proof uses dynamic programming and takes advan-
tage of the decomposition described in Section 3. Begin
by defining the cost-to-go from time t as a function of
the current state and future inputs:

Jt(xt, ut:T−1) =

T−1∑
τ=t

[
xτ
uτ

]T [
Q S
ST R

] [
xτ
uτ

]
+xTTQfxT

Note that Jt is a random variable because it does not de-
pend explicitly on xt+1:T . These future states are defined
recursively using (6), and thus depend on the noise terms
wt:T−1. Using the decomposition 10, the state is divided
according to xt =

∑
s∈U I

V,sζst . We use the abridged no-
tation ζt to denote {ζst : s ∈ U}, and we use a similar
notation to denote the decomposition of ut into ϕt. In
these new coordinates, the cost-to-go becomes:

Jt(ζt, ϕt:T−1) =∑
s∈U

(
T−1∑
τ=t

[
ζsτ
ϕsτ

]T [
Qss Sss

SssT Rss

] [
ζsτ
ϕsτ

]
+ ζsT

TQssf ζ
s
T

)
where the future states ζt+1:T are defined recursively us-
ing (12). Now define the value function, which is the
minimum expected cost-to-go:

Vt(ζt) = min
ϕt:T−1

E Jt(ζt, ϕt:T−1)

Here, it is implied that the minimization is taken over ad-
missible policies, namely ϕst is a linear function of Lst as
explained in Section 3.3. Unlike the cost-to-go function,
the value function is deterministic. The original min-
imum cost considered in the Introduction (2) is simply
V0(x0). The value function satisfies the Bellman equation

Vt(ζt) =

min
ϕt

(
E
∑
s∈U

[
ζst
ϕst

]T [
Qss Sss

SssT Rss

] [
ζst
ϕst

]
+ Vt+1(ζt+1)

)
(19)

Lemma 9. The Bellman equation (19) is satisfied by a
quadratic value function of the form:

Vt(ζt) =
∑
s∈U

E
(
ζst

TXs
t ζ
s
t

)
+ ct (20)

Proof. The proof uses induction proceeding backwards
in time. At t = T , the cost-to-go is simply the termi-
nal cost xTTQfxT , and the value function is the expected
value of this quantity. Decompose xT into its ζT coordi-
nates. The ζT coordinates are mutually independent by
Corollary 6, so we may write

VT (ζT) =
∑
s∈U

E
(
ζsT

TQssf ζ
s
T

)

Thus, (20) holds for t = T , by setting Xs
T = Qf for every

s ∈ U and cT = 0. Now suppose (20) holds for t + 1.
Equation (19) becomes:

Vt(ζt) = min
ϕt

(
E
∑
s∈U

[
ζst
ϕst

]T [
Qss Sss

SssT Rss

] [
ζst
ϕst

]

+ E
∑
s∈U

ζst+1
TXs

t+1ζ
s
t+1 + ct+1

)
(21)

Substitute the recursion for ζt+1 defined in (12), and take
advantage of the mutual independence of the ζt and ϕt
terms proved in Corollary 6. Finally, we obtain:

Vt(ζt) = min
ϕt

(
E
∑
r∈U

[
ζrt
ϕrt

]T
Γrt+1

[
ζrt
ϕrt

])
+ ct+1

+
∑
i∈V
wi→s

trace
(

(Xs
t+1){i},{i}Wi

)
(22)

where Γrt+1 is given by:

Γrt+1 =

[
Qrr Srr

SrrT Rrr

]
+
[
Asr Bsr

]T
Xs
t+1

[
Asr Bsr

]
and s is the unique node in the information graph such
that r → s, see Proposition 1. Equation (22) can be de-
composed into independent quadratic optimization prob-
lems, one for each ϕrt :

ϕrt = arg min
ϕr

t

E
[
ζrt
ϕrt

]T
Γrt+1

[
ζrt
ϕrt

]
for all r ∈ U

The optimal cost is again a quadratic function, which
verifies our inductive hypothesis.

The optimal inputs found by solving the quadratic op-
timization problems in Lemma 9 are given by ϕst = Ks

t ζ
s
t .

This policy is admissible by Corollary 5. Substituting the
optimal policy, and comparing both sides of the equation,
we obtain the desired recursion relation as well as the op-
timal cost (13)–(16).

6.2 Proof of Theorem 8

Consider a node s ∈ U with wi → s. Thus the set sw is
nonempty, and sw = {i}. From (10),

xit =
∑
v3i

Isw,vζvt =
∑
v⊃s

Isw,vζvt (23)

The second equality follows because v 3 i implies that
v ⊃ s. Indeed, for any other j ∈ s, we must have dji = 0.
Thus, if v 3 i, then v 3 j as well. Rearranging (23) gives

Isw,sζst = xit −
∑
v⊃s
v 6=s

Isw,vζvt

6

Since sw and sw partition s, we may write ζst as

ζst = Is,swIsw,sζst + Is,swIsw,sζst .

= Is,swIsw,sζst + Is,sw

(
xit −

∑
v⊃s
v 6=s

Isw,vζvt

)

= Is,swη
(s)
t + Is,sw

(
xit −

∑
v⊃s
v 6=s

Isw,vwη
(v)
t

)
(24)

where we substituted the definition η
(s)
t = Isw,sζst in the

final step and used the fact that i ∈ vw, because v 6= s
and we can’t have both wi → v and wi → s.

We can now find state-space equations in terms of the
new ηt coordinates. The input ut is found by substi-
tuting (24) into (15), and the ηt dynamics are found by
substituting (24) into (12) and multiplying on the left by
Isw,s. Note that the controller now depends on the state
xt rather than the disturbance wt.

References

[1] Y-C. Ho and K-C. Chu. Team decision theory and infor-
mation structures in optimal control problems—Part I.
IEEE Transactions on Automatic Control, 17(1):15–22,
1972.

[2] Andrew Lamperski and John C. Doyle. Dynamic pro-
gramming solutions for decentralized state-feedback LQG
problems with communication delays. In American Con-
trol Conference, 2012.

[3] Xin Qi, M.V. Salapaka, P.G. Voulgaris, and M. Kham-
mash. Structured optimal and robust control with mul-
tiple criteria: a convex solution. IEEE Transactions on
Automatic Control, 49(10):1623–1640, 2004.

[4] Anders Rantzer. Linear quadratic team theory revisited.
In American Control Conference, pages 1637–1641, 2006.

[5] M. Rotkowitz and S. Lall. A characterization of convex
problems in decentralized control. IEEE Transactions on
Automatic Control, 51(2):274–286, 2006.

[6] Parikshit Shah and Pablo A. Parrilo. H2-optimal decen-
tralized control over posets: A state space solution for
state-feedback. In IEEE Conference on Decision and Con-
trol, pages 6722–6727, 2010.

[7] J. Swigart. Optimal Controller Synthesis for Decentralized
Systems. PhD thesis, Stanford University, 2010.

A Partial Nestedness

In this section, we discuss partial nestedness, a concept
first introduced by [1]. Define the sets:

Iit = {xjτ : j ∈ V, 0 ≤ τ ≤ t− dij}

Comparing with (7), Iit is precisely the information that
uit has access to when making its decision.

Definition 10. A dynamical system (6) with informa-
tion structure (7) is partially nested if for every ad-
missible set of policies γit, whenever ujτ affects uit, then
Ijτ ⊂ Iit .

The main result regarding partial nestedness is given
in the following lemma.

Lemma 11 ([1]). Given a partially nested structure, the
optimal control for each member exists, is unique, and is
linear.

In order to apply this result, we must first show that
the problems considered in this paper are of the correct
type.

Lemma 12. The information structure described in (7)
is partially nested.

Proof. Suppose ujτ affects uit in the most direct manner
possible. Namely, ujτ directly affects xµτ+1, which affects a
sequence of other states until it reaches xkσ, and xkσ ∈ Iit .
Further suppose that x`ρ ∈ Ijτ .

ujτ affects xkσ directly =⇒ dkj ≤ σ − τ (25)

xkσ ∈ Iit =⇒ dik ≤ t− σ (26)

x`ρ ∈ Ijτ =⇒ dj` ≤ τ − ρ (27)

Adding (25)–(27) together and using the triangle inequal-
ity, we obtain di` ≤ t− ρ. Thus, x`ρ ∈ Iit . It follows that

Ijτ ⊂ Iit , as required.

If ujτ affects uit via a more complicated path, apply the
above argument to each consecutive pair of inputs along
the path to obtain the chain of inclusions Ijτ ⊂ · · · ⊂ Iit .

With partial nestedness established, Lemma 11 implies
that we have a unique linear optimal controller. In par-
ticular, the optimal γit are linear functions of Iit . Looking
back at (5), we conclude that xt and ut must be linear
functions of the noise history w−1:t−1, since wt cannot
affect xt or ut instantaneously. In general, individual
components such as uit will not be functions of the full
noise history w−1:t−1. This topic is discussed in detail in
Section 3.

7

	Introduction
	Problem Statement
	Spatio-Temporal Decomposition
	Information Graphs
	Noise Partition
	State and Input Decomposition

	Main Results
	Discussion
	Proofs of Main Results
	Proof of Theorem 7
	Proof of Theorem 8

	Partial Nestedness

