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Abstract

This thesis is divided into two main parts. In the first part, we consider the problem

of efficiently computing wavefront estimates for use in adaptive optics hardware on

ground-based telescopes.

Our contribution is to enable wavefront estimation for future large telescopes.

To this effect, we have developed a warm-started single-iteration multigrid algorithm

that performs as well as conventional vector-matrix-multiplication methods, but at a

fraction of the computational cost. We used numerical simulations to compare our

algorithm to a variety of other published methods, and validated our findings at the

Palomar Observatory.

In the second part, we consider feedback control subject to an information con-

straint. Such problems are called decentralized, and are not always tractable. Using

a novel algebraic framework, we are able to prove many structural results, includ-

ing a new convexity result, in a natural and purely algebraic way. This framework is

particularly well-suited for analyzing systems described by rational transfer functions.

We also develop a new condition called internal quadratic invariance, a condi-

tion under which the controller synthesis can be cast as a convex optimization prob-

lem. This describes the most general class of tractable decentralized control problems

known to date. The key insight is that the system’s representation is not unique; and

choosing the right representation can make determining tractability easier.

Both parts of the thesis fit into the broader question of tractability of complex

systems. In the first part we look at a practical example which is difficult because of

the large number of sensors and actuators. In the second part, we look at decentralized

control, which is difficult because of the non-classical information constraint.

v



Acknowledgments

I would like to thank my principal advisor Sanjay Lall and my co-advisor Matthew

West for their continued help and guidance during my time at Stanford. Sanjay’s

knowledge of control theory is truly impressive. He introduced me to decentralized

control, and encouraged me to broaden my mathematical horizons. Not only was

this journey incredibly enriching, but Sanjay’s calm and friendly attitude made it

very enjoyable as well. I consider myself lucky to have been able to collaborate with

Sanjay in my research at Stanford.

Matt co-advised me while I did adaptive optics research, and he has been incred-

ibly helpful. This project required tools beyond control theory such as multiscale

algorithms and large-scale computation; and Matt was an expert in both. His ability

to take a step back from the problem and see connections with other areas of research

such as distributed systems or computational fluid dynamics was an inspiration, and

instrumental to our success.

I would also like to thank our other collaborators for the adaptive optics project.

Doug MacMynowski’s (CalTech) expertise in telescope hardware and software was

invaluable. Thanks also go out to Antonin Bouchez (CalTech) and Jenny Roberts

(JPL), who helped us perform the experiments of Chapter 4 at the Palomar Obser-

vatory.

I would like to thank the the other members of my reading committee, Stephen

Rock and Stephen Boyd. Prof. Rock’s courses on dynamics and control are what

got me interested in doing controls research, and I likely would not have chosen this

path had it not been for his enthusiastic and captivating teaching style. Prof. Boyd’s

courses also played a key role. His courses on linear systems and convex optimization

vi



formed the theoretical foundation upon which most of my research has been based.

Thanks also go out to Prof. Thomas Weber, who was the chair for my defense

committee. Despite the short notice, Thomas took great interest in my research

and had very insightful and constructive comments for me both before and after the

defense.

My Stanford labmates and colleagues were also an integral part of my research

experience. I would like to thank: Sachin Adlakha, John Swigart, Chung-Ching

Chang, Jong-Han Kim, Hyung Sik Shin, and Jeff Wu for many useful discussions and

lab meetings.

I would like to dedicate this thesis to my parents Barbara and André. They have
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Chapter 1

Introduction

As technology progresses, the engineering systems that surround us become increas-

ingly complex. Many of these systems inherently involve some form of control. Ex-

amples include the electronic shock-absorption used in your car, or the electronic

fuel injection in a jet engine. Control may also need to happen on a more global

scale. Examples include packet routing on the internet, or load balancing on the

Western Interconnect power grid. Enabled by increasingly powerful computers and

driven by ever-increasing user demand, these systems continue to grow in size and

intricacy. This growth can pose a challenge in several different ways, and we examine

two particular cases in this thesis.

System Size. Depending on the type of problem we are solving, the best methods

currently available do not always scale well with the size of the problem. The classical

example is the traveling salesman problem, where one must find a tour of n cities

that returns to the starting point and minimizes the total distance traveled. The only

known way to solve such a problem is to enumerate each possible path and test it.

This problem scales very poorly with n. Indeed, if it takes one millisecond to solve

the problem for n = 10, it will take 6 seconds to solve it for n = 15, and roughly

21 years to solve it for n = 20.

In Chapters 2–4, we explore the scalability of a particular example: adaptive
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2 CHAPTER 1. INTRODUCTION

optics (AO) algorithms for use in ground-based telescopes. In this application, hun-

dreds of measurements are taken in real-time and used to cancel out image distortion

caused by atmospheric turbulence. The computation required for the conventional

AO algorithm scales as O(n2), where n is the number of sensors. This isn’t as bad as

the traveling salesman problem, which scales as n!, but it is nevertheless a problem.

We develop an approximate estimation algorithm which scales as O(n), and we show

through numerical simulation and experiment on a real telescope that it achieves per-

formance indistinguishable from that of the conventional algorithm. A more in-depth

introduction to adaptive optics can be found at the beginning of Chapter 2.

Decentralization. Complexity can also arise if the controller is decentralized. This

means that there are actually several controllers, each with access to a different subset

of the available information, and each responsible for a subset of the decisions that

must be made. This is an unavoidable feature of very large systems such as wireless

networks, where there are delays in transmitting messages between nodes. Often,

decisions must be made without full knowledge of the current state of the system.

Decentralized problems are hard in general. Witsenhausen showed in 1968 that

even a simple problem involving two agents can be completely intractable. Char-

acterizing tractable architectures is important because it will help guide future de-

centralized designs and ensure that we are able to analyze the systems we build.

While a complete characterization of tractable decentralized problems has yet to be

discovered, our research takes important steps towards this goal.

In Chapters 5–7, we develop a new mathematical framework that we use to an-

alyze decentralized control problems. This framework provides an intuitive way to

explain existing tractability results, and gives us new results as well. The key insight is

that a system may have several different yet equivalent mathematical representations.

By choosing the right one, determining tractability is made easier. This observation

leads us to a new class of tractable decentralized problems we call internally quadrat-

ically invariant. This class encompasses all previously known classes, and includes

new problems which were previously not known to be tractable. A more in-depth

introduction to decentralized control can be found at the beginning of Chapter 5.



Chapter 2

Adaptive Optics

2.1 Introduction

Adaptive optics (AO) is a technology used in ground-based telescopes that greatly

improves the image quality seen by the telescope. Even in a ideal telescope using

perfectly smooth mirrors and lenses, there are two main sources of image aberration:

diffraction and turbulence. Diffraction is an optical effect characterized by the shape

of the telescope aperture and the wavelength of the light. In a diffraction-limited

arrangement, point sources such as stars appear as bright spots surrounded by con-

centric rings. This is a fundamental limit of telescopes, and can be mitigated by using

a larger aperture diameter, or by observing a shorter wavelength of light.

Atmospheric turbulence also leads to image distortion. Earth’s atmosphere does

not have a uniform temperature distribution, and the local temperature variations

are constantly changing and moving due to diffusion, solar heating, and air cur-

rents. The temperature differences induce local changes in the index of refraction,

and cause distortion. The air in the upper atmosphere is particularly turbulent, and

this causes the distortions observed at the telescope aperture to change frequently.

Since telescopes typically take long-exposure photographs in order to collect a suffi-

cient amount of light, the distortions get averaged and have a blurring effect. When

turbulence dominates over diffraction, we say that the telescope is seeing-limited.

3



4 CHAPTER 2. ADAPTIVE OPTICS

Ground-based optical telescopes with apertures larger than 10–20 cm are typi-

cally seeing-limited. Due to the fast-changing atmosphere and large exposure times

required, one cannot use post-processing techniques to correct for turbulence effects.

AO works in real-time by adjusting the image 100–1000 times per second using fast

sensors to estimate the distortion, and a deformable mirror to correct the wavefront.

The process is illustrated in Figure 2.1. The purple dashed square contains the

feedback control loop. The distorted wavefront enters on the left and gets corrected by

the deformable mirror. Part of the corrected light is split off and sent to a wavefront

sensor, which sends its measurements to a controller. The controller (K) performs

the reconstruction step: estimating the shape of the wavefront from measurements.

The focus of our research is to make this computationally intensive step more effi-

cient. When reconstruction is complete, the actuator commands are sent back to the

deformable mirror. More detail is given in Section 3.2.

Main Mirror

Adaptive Optics System

Atmosphere

WFS

DM
K

Secondary Mirror

CameraScience Object

Distorted
wavefront

Corrected
wavefront

Figure 2.1: Diagram illustrating adaptive optics (AO). The image aberration is esti-
mated using a wavefront sensor (WFS) and passed to a controller (K) which sends
the appropriate commands to the deformable mirror (DM).
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2.2 Computational Challenge

AO systems have a large number of inputs and outputs. The wavefront sensor (WFS)

is an array of small square lenses that provide local gradient measurements of the in-

coming wavefront. The deformable mirror (DM) is an array of individually actuated

mirrors that can be used to reconstruct the shape of the distorted wavefront. In

practice a very simple model is used: all atmospheric dynamics are neglected and a

static estimation problem is solved at every timestep. Namely, the two-dimensional

wavefront shape must be reconstructed from local measurements. The optimal esti-

mation gain matrix is pre-computed offline, and estimation is carried out in real-time

by performing a full vector-matrix-multiplication (VMM) at every timestep.

The estimation gain matrix is dense in general, so the VMM step is computation-

ally expensive, and scales with the square of the number sensors and actuators. A

further difficulty is that the timesteps must be made short to achieve good perfor-

mance, typically 1-10 milliseconds. Small AO systems (102–103 sensors and actuators)

have been built and used with great success, but future systems will be much larger

(104–105 sensors and actuators). Future telescopes may also implement so-called

multi-conjugate adaptive optics (MCAO) that would further increase the number of

sensors, actuators, and computation required.

In this research, we have enabled efficient wavefront estimation for future large

AO systems by finding scalable reconstruction algorithms that perform as well as the

optimal estimators currently used in practice. In Chapter 3, we compare the leading

proposed solutions using computer simulations, and we show that using a warm-start

technique yields comparable performance with huge computational cost savings [17].

In Chapter 4, we validate our warm-start technique on the 3.1 meter telescope at the

Palomar Observatory. We show that our efficient reconstruction algorithm performs

as well as the optimal reconstructor used with VMM, and provides a considerable

computational savings [16].



Chapter 3

Algorithms

3.1 Literature Review

Since the original paper on AO reconstruction [30], there has been much effort invested

in accelerating the estimation task. One way to do this is to observe that the dense

estimation gain matrix is (to good approximation) the inverse of a sparse matrix.

Thus, there is promise that iterative methods could find the estimates efficiently.

Sparse matrix factorization methods [4] have been used with a conjugate-gradient

iterative scheme paired with either a multigrid [11, 8] or Fourier [31] preconditioner.

This provides convergence in only a small number of iterations. Other methods of

acceleration include a Fourier-domain reconstruction [21], a blended Fourier/PCG

method [24], and a local control approach [18].

These methods are typically simulated in open-loop using a quasi-static assump-

tion: a single phase screen is used to generate a measurement, construct an estimate,

and compute the error. In other words, an independent estimation problem is solved

for every measurement. Since measurements are obtained at high rates (typically up

to 1 kHz), these methods do not take advantage of the fact that the atmosphere has

some slow dynamics that do not change from one timestep to the next. In other

words, there could be some value in predicting the next estimate given the current

one.

More complicated temporal atmospheric models have been developed to address

6



3.1. LITERATURE REVIEW 7

this issue. A popular model is the Taylor frozen-flow approximation, which assumes

the atmosphere is composed of stacked translating layers. State-space representations

of this model have been proposed, which have led to formulations using the theory of

optimal control [7, 20, 22]. However, these methods require the layer wind velocities

be either estimated or known a priori.

Another possibility is to use a spectral decomposition. The phase is projected

onto a basis such as the Zernike polynomials, and each mode is modeled separately

[19, 15]. While the spatiotemporal statistics produced are correct, the associated

cost of solving discrete algebraic Riccati equations and storing large dense covariance

matrices is very high. Recent work by Poyneer et al. [22] avoids this problem by using

a modal decomposition to decouple the Riccati equation, thereby greatly reducing the

cost.

We compared the computational performance of 15 iterative reconstructors by

running numerical simulations in both open-loop and closed-loop of a large single-

conjugate adaptive optics system (SCAO). The sensor sampling rate is chosen by

examining the trade-off between sampling rate and minimum achievable estimation

error.

We also examined the benefits of warm-starting, where the most recent estimate

is stored and used to initialize the subsequent iteration. The alternate approach is to

cold-start, where the iterative schemes are initialized at zero. We show that although

the iterative reconstructors may converge at different rates in open-loop with a cold-

start, they all require a single iteration per timestep in closed-loop. The best methods

are the ones with the cheapest cost per iteration.

Similar solution techniques apply to the multi-conjugate (MCAO) case, but the

results are different. In MCAO, minimum variance reconstructors (MVR) or some

other type of regularization must be implemented to achieve acceptable performance.

In SCAO, there is no benefit to using MVR. A simple least-squares reconstructor has

a virtually identical performance.

Standard closed-loop techniques give rise to stability problems in MCAO [9, 6].

We tried three different closed-loop architectures in SCAO, and found them all to be

stable for every method tested. We also show that the FD-PCG algorithm [31, 10]
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performs well in the SCAO case.

In Section 3.2, we describe the system model (geometry, sensors, and noise). In

Section 3.3, we discuss least-squares and minimum-variance reconstruction. In Sec-

tion 3.4, we discuss iterative schemes used to accelerate reconstruction. Finally, in

Section 3.5, we analyze computational performance through simulation using a Taylor

frozen-flow model and a square 128× 128 sensor/actuator array.

3.2 System Model

3.2.1 Sensor and Actuator Geometry

In optical telescopes, the aperture is typically annular so the deformable mirror (DM)

and sensor array also share this shape. The algorithms we will discuss use sparse

matrix operations and do not rely on a particular choice of geometry. Thus, for

simplicity, we will assume a square sensor and actuator grid. The actuators lie at

the vertices of an N × N grid and the sensors are aligned with the centers of the

faces. This arrangement is called the Fried geometry, and is illustrated in Figure 3.1.

If the sensors and actuators are collocated, we call it a Hudgin geometry. For many

implementations, the wavefront shape is estimated at a resolution greater than that

afforded by the DM so a fitting step is required to find the best DM commands. In

this work, we assume the resolutions match so there is no fitting step.

3.2.2 Measurement Equation

The most commonly used wavefront sensors measure either local gradient or local

curvature in the incident wavefront. We will assume an array of Shack-Hartmann

sensors, which produce gradient measurements in both transverse directions. The

measurements can be written as a linear function of the phases at each of the four

nearest actuator locations plus Gaussian sensor noise [12]. For example, referring to



3.2. SYSTEM MODEL 9

a11 a12 a13 a1N

a21 a22 a23 a2N

a31 a32 a33 a3N

aN1 aN2 aN3 aNN

s11 s12

s21 s22

Figure 3.1: Fried Geometry. The sensors (sij) are at the centers of the faces, and the
actuators (aij) are at the vertices. We measure a noisy gradient of the phase at sij,
and the goal is to estimate the phase at aij.

Figure 3.1,

y(s12) =
1

2

[
φ(a13)− φ(a12) + φ(a23)− φ(a22)

φ(a13) + φ(a12)− φ(a23)− φ(a22)

]
+

[
v1

v2

]
.

If we collect all the phases into a vector φ arranged in a column-major ordering:

φk = φ(aij) where k = i+ (j − 1)N , and we do the same for y and v, we can write a

linear equation relating the phase offsets to the measurements:

y = Gφ+ v,

where φ ∈ RN2
, y ∈ R2(N−1)2 , and v is a vector of zero-mean independent identically

distributed Gaussian random variables with cov v = σ2I. Note that G is a sparse

matrix (four nonzero entries per row). From now on, let n = N2 denote the length

of the vector φ.

The sensor measurements y only depend on relative phase measurements. To take

advantage of this, we assume each set of phases is translated such that the average
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value is zero. In other words, define: x = (I − 1
n
11T )φ where 1 is the n× 1 vector of

ones. This is equivalent to removing the piston mode, further discussed in Section 3.3.

The same linear equations hold:

y = Gx+ v. (3.1)

In the next section, we will discuss how to model the noise variance σ2.

3.2.3 Noise Model

What follows is a summary of the Shack-Hartmann sensor noise model developed in

[12, §5.3]. The sensor noise v is Gaussian to a good approximation, but its variance

σ2 depends on a variety of factors, including the guide star brightness and the noise

in the CCD detectors:

σ2 =

(
3π2Kg

8

)2
nph + nbg +NDσ

2
e

n2
ph

, (3.2)

where nph and nbg are the expected number of signal and background photo-electrons

hitting a single sensor per sampling interval, and σe is the RMS read-out error in each

of the ND CCD detector pixels forming each sensor. Kg is a correction factor that

accounts for the small gaps between the sensors. Equation (3.2) has this particular

form because the number of photons hitting a sensor is distributed as a Poisson

process. The number of photo-electrons is related to the sample rate via:

nph =
ηµphA

b
nbg =

ηµbgA

b
, (3.3)

where b is the sample rate in Hz, and µph and µbg are photon fluxes in photons per

square meter per second, A is the portion of the area of the main mirror that projects

onto a single sensor subaperture (in m2), and η is the product of the quantum efficiency

of the CCD and the optical efficiency of the various mirrors and filters. Combining
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(3.2) and (3.3):

σ2 =

(
3π2Kg

8

)2(
η(µph + µbg)A

b
+NDσ

2
e

)(
b

ηµphA

)2

. (3.4)

This equation relates the sensor noise variance σ2 to the sample rate b and the photon

arrival rates µph and µbg, which are a function of the guide star brightness. Note that

increasing the sampling rate makes the sensors noisier, and using a brighter guide

star makes the sensors more accurate.

3.3 Wavefront Reconstruction

3.3.1 Least-Squares Reconstruction

The objective is to estimate the phase at each of the actuator locations, so that we

may send this information to the deformable mirror and cancel the aberration. Only

the relative phase is meaningful, so we can estimate x instead of φ. From (3.1):

y = Gx+ v.

Since the system is overdetermined (roughly twice as many sensor measurements as

actuators), one can minimize the norm of the residual. This is known as least-squares

reconstruction. However, a regularization must be performed in part because G is not

full-rank: the piston (constant) and waffle (checkerboard) modes are in the nullspace

of G and hence are unobservable. We construct phase estimates with a zero waffle

mode because the waffle mode is small in practice, and we also make the piston mode

zero because only relative phase offsets matter. If we let V denote the n× 2 matrix

whose columns are the normalized piston and waffle modes, the problem becomes to

find x̂ in order to

minimize ‖y −Gx̂‖2

subject to V T x̂ = 0.
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The solution to this problem is:

x̂ =
(
GTG+ V V T

)−1
GTy.

We can compute x̂ by solving the linear system:

(
GTG+ V V T

)
x̂ = GTy. (3.5)

3.3.2 Minimum-Variance Reconstruction

In order to better estimate x, one must know something about its prior distribution.

The first complete summary of the theory of propagation through atmospheric tur-

bulence is due to Tatarskii [26], based on the assumption of a Kolmogorov power

spectral density (PSD) for spatial phase distribution: Φ(k) ∝ k−11/3. The model is

widely accepted because its predictions agree well with experimental evidence.

The phase φ has infinite variance because the PSD is unbounded at zero. However,

the piston-removed phase x is normally distributed with zero mean and finite covari-

ance C. The inverse of this covariance matrix can be approximated by a product of

sparse matrices:

C−1 ≈ LLT , (3.6)

where L is proportional to a discretization of the Laplacian operator. This procedure

was originally applied to a Hudgin geometry [4] but works just as well for Fried geom-

etry [29] as long as we modify the discretized Laplacian accordingly. In both cases,

the correct choice is that L be proportional to GTG. The piston and waffle modes are

therefore still unobservable. We can estimate x by minimizing the conditional mean

square error. We must find x̂ in order to

minimize E
(
‖x− x̂‖2

∣∣ y)
subject to V T x̂ = 0,

where x is a zero-mean random variable with covariance matrix C. The solution to
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this problem is:

x̂ =
(
GTG+ σ2C−1 + V V T

)−1
GTy.

This is known as minimum-variance reconstruction. We can compute x̂ by using the

approximation in (3.6) and solving the linear system:

(
GTG+ σ2LLT + V V T

)
x̂ = GTy. (3.7)

This is very similar to the least-squares solution. Indeed, the solutions are identical

in the case of zero sensor noise.

Note that the original formulation of minimum-variance reconstruction [4] takes

into account both the fitting and estimation steps. Since we neglect the fitting step

and all statistics are Gaussian, the minimum-variance estimate is the same as a max-

imum a posteriori (MAP) estimate [31, pp. 5282].

3.4 Iterative Methods

3.4.1 MG and MG-PCG Methods

What follows is a brief review of multigrid and preconditioned conjugate-gradient

methods. Equations (3.5) and (3.7) are of the form Ax̂ = b, where Au can be

computed in O(n) floating point multiplications for arbitrary u ∈ Rn. This follows

because:

• G and L are sparse so GTGu and LLTu cost O(n).

• V V Tu = V (V Tu) costs O(n) because V ∈ Rn×2.

Such systems can be solved efficiently by using multigrid methods. Multigrid methods

use a smoother, a cheap linear iterative method that rapidly removes high-frequency

content in the error. The residual is projected onto a coarser grid using a restriction

operator, and the smoother is applied again. The general idea is that low-frequency

content in the residual becomes high frequency content when projected onto a coarser
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grid. This process continues, and the various coarse-level corrections are interpolated

back onto the fine grid using a prolongation operator. The corrections are then added

to the original estimate to improve it. When done repeatedly, this is known as a

multigrid (MG) iterative method. If we alternate between a MG iteration and a

conjugate gradient iteration, this is known as a multigrid-preconditioned conjugate-

gradient iteration (MG-PCG).

Both MG [29] and MG-PCG [11, 8] methods provide O(n) convergence for the

least-squares and minimum-variance reconstructors. The important parameters are:

1. The type of smoother used, typically a weighted-Jacobi (J) or Gauss-Seidel (GS)

iteration.

2. The number of smoothing iterations to run on each level before (ν1) and after

(ν2) applying the coarse-level correction.

3. The choice of restriction and prolongation operator. Here, we use full weighting

for restriction and bilinear interpolation for prolongation [27, §2.3].

4. The cycle pattern, describing how the various levels are visited. Here, we use

V-cycles (each level is visited twice per iteration), unless otherwise indicated.

For a comprehensive look at multigrid methods we refer the reader to [27]. Once we

have selected the specific multigrid method, the general procedure is:

1. Measurement arrives

2. Run a predetermined fixed number of iterations of the chosen method, which

ensures the estimate has converged

3. Send the estimate to the controller which passes the appropriate actuator signals

to the DM

4. Go to step 1.

We call this procedure a cold-start configuration because every time a new measure-

ment arrives, the iterative process is restarted with an initial guess of x̂0 = 0, the

prior mean of the distribution of x.
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3.4.2 Warm-Start Configuration

In the warm-start configuration, the most recent phase estimate is used as a guess

value for the first iteration whenever a new measurement arrives. This technique is

commonly used in numerical linear algebra, and has also been used in the context of

adaptive optics [10].

Atmospheric phase offset is strongly correlated in time, so we can expect the most

recent estimate to be a good guess for the current phase. As we will see, iterative

multigrid reconstruction schemes converge much faster when used in a warm-start

configuration.

3.4.3 Computational Cost

We will evaluate various iterative schemes on the basis of computational cost. Here,

we chose to count the number of floating point multiplications. This cost includes:

smoother iterations, computation of residuals, restriction and prolongation operations

required to pass corrections up and down the hierarchy of levels, and conjugate gra-

dient iterations if applicable. All costs were computed analytically to ensure a fair

comparison.

In the case of Fourier-based methods, we associated a cost of 1
2
n log2(n) multi-

plications to perform an FFT on a vector of length n. This is consistent with the

cost of a Radix-2 implementation (n is a power of 2). It is worth noting that FFTs

can be implemented very efficiently in hardware, so FLOPs may not be an accurate

representation of true performance.

There are other possible choices, such as the number of total floating-point oper-

ations (multiplications and additions), or memory considerations.

3.5 Simulation

In this section we present our simulation results. Using a Taylor frozen-flow temporal

dynamics model, we simulated the open-loop cold-start and warm-start cases, as well

as the closed-loop case.



16 CHAPTER 3. ALGORITHMS

3.5.1 Parameters

The photon flux from the guide star in the visible is:

µ = 0.9405× 1010−0.4M , (3.8)

where M is the stellar magnitude, and µ is the photon flux measured in photons per

square meter per second. We assumed a 30 m×30 m square aperture, and a 128×128

array of sensors arranged using Fried geometry. There are therefore 1292 actuators.

We assumed Shack-Hartmann quad-cell (ND = 4) sensors with a RMS read error

of σe = 7 electrons. The gap correction factor was chosen to be Kg = 1.2, which is

typical of this type of sensor [12]. We also chose a quantum efficiency of 0.8 and an

optical efficiency of 0.5, for a total efficiency of η = 0.4. For the background photons,

we chose a value of 20 magnitudes per arcsec2, which translates to nbg ≈ 0.01nph in

this case.

Phase screens with the proper spatio-temporal correlations were generated using

Arroyo [1, 2], a C++ library for the simulation of electromagnetic wave propagation

through turbulence. We chose seeing conditions consistent with Ellerbroek’s Cerro

Pachon layered atmospheric model [5] and assumed Kolmogorov statistics for each

layer (Taylor frozen flow hypothesis).

Using Arroyo, we generated data consisting of 1000 independent runs for each of

25 logarithmically spaced sample rates between 10 and 104 Hz. Each run consists

of 10 time-correlated phase screens. Each simulation was generated from these data,

and all results were averaged over the 1000 independent runs.

Least-squares and minimum-variance reconstructors were implemented. For the

minimum-variance case, we used L = γGTG, where γ2 = 0.2 was calculated via

Monte-Carlo simulation to minimize the piston-removed mean squared error (MSE).

3.5.2 Open-Loop Cold-Start Simulation Results

Regardless of the estimation method, there is a tradeoff for choosing the optimal

sample rate which depends on the seeing conditions and guide star brightness [12, pg.
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74].

The sensors take time-averaged measurements, the iterative scheme takes time to

converge, and the control algorithm takes time in responding to the changes in the

estimate. These delays result in estimation error, because even if the DM is ideal,

it will assume the shape of the measured wavefront, not the current wavefront. As

we increase the sample rate of the sensors, this delay error is reduced. However, as

seen in Section 3.2.3, increasing the sample rate makes the sensors noisier, resulting

in increased estimation error. With this trade-off in mind, we can select the sample

rate that minimizes the minimum achievable mean square error.

For each of the M = 1000 runs indexed by i, we took two temporally correlated

phase screens x
(i)
1 , x

(i)
2 . The first screen is used to generate a noisy measurement and

estimate:

y
(i)
1 = Gx

(i)
1 + v

(i)
1

x̂
(i)
1 = A−1GTy

(i)
1 .

Note that the noise strength cov v
(i)
1 = σ2I depends on the sample rate as in (3.4).

The coefficient matrix to be used is either A = GTG + V V T (least-squares), or

A = GTG+ σ2LLT + V V T (minimum variance). The estimate is compared with the

second screen to compute various normalized MSE measures:

1. Lag error: 1
M

∑M
i=1

∥∥∥x(i)1 − x(i)2

∥∥∥2/ 1
M

∑M
i=1

∥∥∥x(i)2

∥∥∥2
2. Noise error: 1

M

∑M
i=1

∥∥∥x̂(i)1 − x(i)1

∥∥∥2/ 1
M

∑M
i=1

∥∥∥x(i)2

∥∥∥2
3. Total error: 1

M

∑M
i=1

∥∥∥x̂(i)1 − x(i)2

∥∥∥2/ 1
M

∑M
i=1

∥∥∥x(i)2

∥∥∥2
Using the seeing conditions chosen in Section 3.5.1, together with a guide star

magnitude of 8, we plotted the three error measures (Figure 3.2). The total error

coincides with the lag error at low sample rates, and with the noise error at high

sample rates. The optimal sample rate is about 417 Hz for these conditions. As
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previously noted, we are dealing with open-loop estimation. In a closed-loop configu-

ration, the plot would look similar but would have a different optimal frequency due

to the additional errors incurred by the controller dynamics.
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Figure 3.2: Error measures for least-squares reconstruction using a guide star of
magnitude M = 8 and the seeing conditions from Section 3.5.1. Exact inverse was
computed and averaged over 1000 independent runs. In these conditions, the optimal
sensor sampling rate is about 417 Hz, and the minimum expected relative error just
under 10−4.

One way to quantify the noise level is to use the notion of signal to noise ratio

(SNR). For consistency with existing literature [11, 15, 24, 29, 31], we use the following

definition:

SNR =

(
E ‖Gx‖2
E ‖v‖2

)1/2

.

Choosing a brighter star magnitude M = 5, and a fainter star magnitude M = 10,

we can see how SNR varies with sample rate in Figure 3.3. In the literature, SNR

values ranging from 1 to 100 are typically assumed, which is consistent with the range

obtained in this figure.

Using these three different star brightness values as a way of characterizing dif-

ferent noise levels, we obtained different trade off curves and corresponding optimal

sample rates (Figure 3.4).

The minimum-variance reconstructor only outperforms least-squares when we are
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Figure 3.3: SNR variation for various guide star magnitudes M as a function of the
sensor sampling rate. A higher SNR is obtained by using a brighter guide star or a
lower sampling rate.

noise-dominated (either a faint guide star or an excessively high sample rate). When

using the optimal sample rate for large SCAO reconstruction, there is no advantage

to using minimum-variance reconstruction. This is consistent with the observation by

Ellerbroek that conventional least-squares reconstruction is near optimal for future

large AO systems [4].

Next, we compared several existing iterative methods on a basis of computational

cost (as described in Section 3.4.3). See Table 3.1 for a complete list. We used

both Jacobi and Gauss-Seidel smoothers, with and without PCG, and we varied the

number of pre- and post- smoothing steps per iteration. We added some new methods

that to our knowledge have not been published specifically for AO: a W-cycle MG

scheme (V-cycles were used for all other methods), and asymmetric MG schemes that

only perform one smoothing step per V-cycle, such as GS(1,0). Also, the recently

proposed Fourier-Domain PCG (FD-PCG) method has been simulated for MCAO

systems [31, 10]; here we demonstrate its performance on an SCAO system.

The results are presented in Figure 3.5. With the exception of FD-PCG, the

various methods converge to the minimum error from Figure 3.2 in a few iterations

with comparable computational effort. The simulation parameters used were the
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Figure 3.4: Bandwidth-Error trade off curve for various star magnitude values (M)
using least-squares and minimum-variance reconstruction. The SNR at the minimum
points are 26.2 for M = 5, 9.7 for M = 8, and 4.5 for M = 10. We averaged 1000
independent runs.

same as those used in Figure 3.2, running at the optimal sample rate of 417 Hz.

These plots are similar to the ones produced in [11, 29], except that the x-axis counts

multiplications required rather than iterations.

We can compare the various cold-start and warm-start schemes by evaluating the

total cost to convergence in multiplications. Table 3.2 shows that the most efficient

convergence was obtained when we used GS with a W-cycle and the smallest number

of smoothing steps possible.

3.5.3 Open-Loop Warm-Start Simulation Results

We now generate the analogous plot to Figure 3.5 but using warm-start. We used the

same simulation parameters running at the same optimal rate of 417 Hz. Note that

it is not a priori obvious that this is the right choice of sample rate. In a warm-start

configuration, if multiple iterations are required to reach convergence, then it may

be better to sample more frequently so that newer information is being used in the

iteration. In other words, it may be better to not iterate to convergence before taking

in the next measurement. However, we found that almost every iterative algorithm



3.5. SIMULATION 21

Table 3.1: List of iterative schemes

Number Type Smoother Cycle Cost per iter.

1 MG GS(1,0) V 3.406× 105

2 MG GS(1,1) V 4.723× 105

3 MG GS(2,2) V 7.358× 105

4 MG J(1,0) V 3.406× 105

5 MG J(1,1) V 4.723× 105

6 MG J(2,2) V 7.358× 105

7 MG GS(1,0) W 5.050× 105

8 MG GS(1,1) W 7.003× 105

9 MG-PCG SGS(1,1) V 6.377× 105

10 MG-PCG SGS(2,2) V 9.012× 105

11 MG-PCG J(1,1) V 6.377× 105

12 MG-PCG J(2,2) V 9.012× 105

13 MG-PCG J(1,1) W 8.657× 105

14 MG-PCG SGS(1,1) W 8.657× 105

15 FD-PCG – – 12.984× 105

The cost per iteration is measured in floating-point multiplications. For all methods
except FD-PCG, this cost is proportional to the number of actuators.

we tried converged in a single iteration for the parameters used herein. Thus the

separation of the choice of algorithm and choice of sample rate remains as in the

cold-start case.

We used x̂0 = 0 to start the first iteration when the first measurement arrived.

Whenever a new measurement arrived, we used the most recent estimate as an initial

guess for the subsequent iteration. We ran each test for 20 sampling intervals to ensure

the iterative scheme was operating in steady-state (the transient behavior typically

disappeared after 3-6 measurements had been processed). The converged results were

then used to compute the relative piston-removed MSE.

For each iterative scheme, we varied the number of iterations executed during

each sampling interval and plotted the resulting average relative error. See Figure

3.6. Only one iteration per timestep was required for every multigrid method we

tested with the exception of MG-J(1,0) and FD-PCG.
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Figure 3.5: Convergence plots comparing simple multigrid (MG), with conjugate
gradient methods using either a multigrid (MG-PCG) or Fourier-domain (FD-PCG)
preconditioner. MG methods use Gauss-Seidel (GS) or Jacobi (J) smoothers. The
pair (ν1,ν2) is the number of pre- and post-smoothing steps. Most methods converge in
a few iterations with comparable computational effort. We averaged 1000 independent
runs.

It is worth noting that by warm-starting, we get no change in the expected steady-

state error, just faster convergence to that error. Thus, the trade-offs from Figures

3.2 and 3.4 still hold when we warm-start.

The data from Figure 3.6 are summarized in Table 3.3, where we compare the

various iterative schemes once again. This table tells us how much computation

would be required to implement the algorithms in a warm-start configuration rather

than iterating to convergence every time a new measurement arrives.

3.5.4 Closed-Loop Simulation Results

In a closed-loop setting, the DM corrects the incident phase before the sensors take

measurements.

In this simulation, we began with a sequence of time-correlated piston-removed

phase screens generated using Arroyo: {x1, x2, . . .}. We closed the loop in two different
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Table 3.2: Cost comparison (iterating to convergence)

Iterative scheme
Iteration cost Iterations to Total cost

(multiplications) convergence (multiplications)

FD-PCG 1.30× 106 9 1.17× 107

MG, J(1,0) 3.41× 105 6 2.04× 106

MG-PCG, J(2,2) 9.01× 105 2 1.80× 106

MG, GS(2,2) 7.36× 105 2 1.47× 106

MG, GS(1,1) 4.72× 105 3 1.42× 106

MG, GS(1,0) 3.41× 105 4 1.36× 106

MG-PCG, J(1,1) 6.38× 105 2 1.27× 106

MG, GS(1,0), W-cycle 5.05× 105 2 1.01× 106

The iterations to convergence were extracted from Figure 3.5. The cheapest method
using this metric is GS(1,0) using a W-cycle.

ways: a standard loop closure (left) and a pseudo-open loop (POLC) [6] implemen-

tation (right).

yt = G(xt − ut−1) + vt yt = G(xt − ut−1) + vt

êt = Kyt x̂t = K(yt +Gut−1)

ut+1 = ut + βêt ut+1 = ut + β(x̂t − ut−1)

In the standard case, the iterative scheme is used to find the estimated error, whereas

in POLC, the previous input is used to compute an equivalent open-loop measure-

ment, and the iterative scheme is used to find an estimate of the actual phase screen

xt. In both cases, K is one iteration of the least-squares iterative scheme of our

choice. In practice, a wide range of control gains lead to stable systems with the

minimum error. We chose β = 0.5 for all our simulations.

Both models assume two timesteps of delay: a 1-step delay to process the mea-

surements since yt depends on the past input ut−1, and a 1-step delay to compute the

estimate since the future input ut+1 depends on yt. The relative error at timestep t is

computed using the formula: ‖xt − ut−1‖2
/
‖xt‖2. This is analogous to the way we

computed error for the cold-start and warm-start open-loop simulations. Note that
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Figure 3.6: Plots comparing converged values of various methods using the open-loop
warm-start technique. For every method except MG-J(1,0) and FD-PCG, only one
iteration per measurement is required for minimum error. The best method to choose
is simply the one that has the smallest iteration cost. We averaged 1000 independent
runs.

the average error in closed-loop will be higher than the average error in open-loop,

because our closed-loop implementations have a 2-step delay.

We simulated the standard case using both cold-start and warm-start, and we

simulated the POLC case using warm-start. In cold-start, POLC requires at least a

few iterations per timestep to converge to the minimum error, as in Figure 3.5. We

found that all three loop closure schemes are stable for every method we tested, and

that every one can be implemented with one timestep per iteration.

Results are presented in Figure 3.7. For the standard closed-loop case using cold-

start, every iterative scheme with the exception of MG-J(1,0) and FD-PCG converged

to a minimum error floor. These are the only two methods we tested that require

more than one iteration per timestep to achieve the minimum error. Note that the

iterative scheme is estimating the error, and not the actual phase. Since we expect the

error to be small, an initial guess value of 0 (cold-starting) produces fast convergence

in only one iteration.

We can also use warm-start with the standard case. After iterating, we store the

error vector, and use it to warm-start our iteration at the next timestep. With this
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Table 3.3: Cost comparison (fewest possible iterations)

Iterative scheme
Iteration cost Iterations Total cost

(multiplications) per timestep (multiplications)

FD-PCG 1.30× 106 2 2.60× 106

MG-PCG, J(2,2) 9.01× 105 1 9.01× 105

MG, GS(2,2) 7.36× 105 1 7.36× 105

MG, J(1,0) 3.41× 105 2 6.81× 105

MG-PCG, J(1,1) 6.38× 105 1 6.38× 105

MG, GS(1,0), W-cycle 5.05× 105 1 5.05× 105

MG, GS(1,1) 4.72× 105 1 4.72× 105

MG, GS(1,0) 3.41× 105 1 3.41× 105

The iterations to convergence were extracted from Figure 3.6. In a warm-start con-
figuration, we do not need to iterate to convergence at every timestep in order to
achieve the minimum error. Note that the methods are ordered differently here than
in Table 3.2. The cheapest method here is GS(1,0).

small change, all the methods we tested converged to the minimum error floor with

virtually identical error.

Finally, we tested the POLC case. In this case, we store our previously applied

input, and use it to convert our closed-loop measurement into an open-loop measure-

ment. The iterative scheme is then used to estimate the actual phase. This method

benefits greatly from warm-starting, as one might expect from the open-loop results

in Figure 3.6. Once again, all methods converged to the minimum error. We also

tried this method with cold-start, and found that 3-4 iterations per timestep were

typically required, as in Figure 3.5.

This is the same conclusion we drew from the open-loop warm-start plot, which

means that we can compute the cost required for closed-loop implementation directly

from Table 3.3. To find the required computer speed, we multiply the total cost by

the sample rate.
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3.6 Conclusion

We have explored the effectiveness of using warm-started iterative methods for adap-

tive optics reconstruction. In open-loop or POLC, warm-start provides a significant

benefit. When applied to most iterative methods, convergence is achieved in only one

iteration, reducing the number of multiplications required by a factor of about three.

For a standard closed-loop implementation, the advantage of warm-starting is less

significant because most iterative algorithms already achieve the optimal performance

with a single cold-started iteration per timestep. The control removes much of the

(large-amplitude) correlated information between timesteps, so that the residual er-

ror is both smaller and less correlated. Nevertheless, when we warm-start in this

case, every algorithm we tested provides the same minimal error, and convergence

in one iteration per timestep. This shows that iteration cost is the most meaningful

performance metric.

In principle, any iterative scheme can be warm-started, and should always yield a

computational speedup. For methods such as Fourier-based reconstruction, which do

not afford an iterative implementation, it is not clear how to take advantage of the

warm-start approach.

In the next chapter, we implement some of these reconstructors and validate our

findings on a real adaptive optics system.
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Figure 3.7: Closed-loop time series in cold-start (top), warm-start (middle), and
warm-started POLC (bottom). 500 timesteps were simulated, performing one iter-
ation per timestep. We tested 15 different iterative schemes (only 4 are plotted).
All were stable and performed equally well, with the exception of MG-J(1,0) and
FD-PCG in the cold-start standard case, which converged to a slightly higher error.



Chapter 4

Experiments

4.1 Introduction

In Chapter 3, we showed via numerical simulation that warm-started iterative meth-

ods achieve fast and accurate wavefront reconstruction. In this chapter, we validate

our findings on the Palomar adaptive optics installation at Palomar mountain in

Southern California.

In general, wavefront reconstruction is implemented in hardware using vector-

matrix multiplication (VMM). If we have n actuators and 2n sensor measurements,

a dense n × 2n reconstructor matrix is precomputed and stored. Every time a new

measurement arrives, VMM is performed between the stored reconstructor matrix and

the vector of measurements. This is inadequate for future large (104–105 actuator)

systems, since computation scales as O(n2).

Many faster methods have been proposed and analyzed using computer simula-

tions. Examples include: a conjugate-gradient (CG) method [11], a Fourier-domain

(FD) method [21], a blended FD/CG method [24], and a sparse method [25]. The

work presented in Chapter 3 is also published in [17], and shows that all of the above

methods are equally effective when implemented using warm-start with a single iter-

ation (SIMG). A similar conclusion was reached for the multiconjugate (MCAO) case

[10].

Two computationally efficient methods that have previously been tested on-sky

28
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are the FD method [23] and a sparse method [25]. These methods are O(n log n). In

this chapter, we detail experimental validation of the SIMG method on a real SCAO

system. Our results were published in [16]. SIMG is O(n), and shows no performance

degradation when compared to the least-squares reconstructor.

4.2 Reconstruction Summarized

We will now give a brief overview of wavefront reconstruction, and make note of a

couple facts relevant to physical implementation. For more detail, please refer to

Section 3.3. A good model for the wavefront sensor (WFS) is (3.1):

y = Gx+ v,

where x is the wavefront phase, y are the measurements, v is white noise, and G is a

sparse influence matrix. The least squares reconstruction matrix is found by taking

the pseudoinverse. In practice, we can compute it by evaluating K = (GTG+εI)−1GT

for a small ε. This ensures that unobservable modes such as piston and waffle are

zeroed out. The SIMG method uses a single multigrid sweep with an initial guess of

0 to obtain an approximate solution to the equation

(GTG+ εI)x̂ = (GTy).

If the measurements are taken in open-loop, x̂ is the wavefront phase. In this case,

x̂0 = 0 is a bad guess, so multiple iterations are required to achieve acceptable conver-

gence. However, we showed in Chapter 3 that when we operate in closed-loop, only

one iteration is required. In this case, x̂ is the change in wavefront phase between

successive timesteps, and using an estimate of 0 is a good guess.

4.3 Telescope Description

Our tests were performed on the Palomar Adaptive Optics (PALAO) system on the

Hale 5.1 meter telescope [28], pictured in Figure 4.1. The PALAO system has a
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deformable mirror (DM) with 241 active actuators and a Shack-Hartmann wavefront

sensor (WFS) array with 256 subapertures, producing a total of 512 measurements.

Figure 4.1: View of the Palomar Observatory.

The optics bench is shown in Figure 4.2, and a diagram of the mirror geometry

is shown in Figure 4.3. Note that the DM and WFS are aligned in a Fried geometry,

which is the same as the one analyzed in Chapter 3 (Figure 3.1).

The AO system collects measurements y at up to 2 kHz. Tip and tilt are removed

from the wavefront using a fast-steering mirror (FSM) and proportional-integral (PI)

controller. The rest of the wavefront offset x̂ is reconstructed by VMM: x̂ = Ky. This

estimate is fed back through a second PI loop to the DM. The closed-loop corrected

wavefront is split using a dichroic mirror. The visible part of the signal is sent to the

WFS, while the near-infrared portion is sent to the Palomar High Angle Resolution

Observer (PHARO) camera [13] for imaging. A block diagram is shown in Figure 4.4.

Note the resemblance between this diagram and the one from Chapter 3 (Figure 2.1).
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(a) (b)

Figure 4.2: Adaptive Optics bench at the Palomar Observatory. Note the wavefront
sensor (a) and the deformable mirror (b). The individual segments are not visible
because of the high smoothness and reflectivity of the mirror surface.

4.3.1 Implementation Details

Since the PALAO actuators are in a circular arrangement rather than the convenient

square arrangement assumed in Chapter 3, some tweaks were required. We circum-

scribed the circular grid with a 17 × 17 square grid and filled the extra space with

virtual actuators. Thus, the influence matrix G was augmented appropriately with

0’s, as in [24]. The new system is y = Ḡx̄, where Ḡ is 512× 289 instead of 512× 241.

This new system is equivalent to the original one, so no approximation was made.

We can now use the SIMG method [17] on this system to reconstruct all the actuator

commands, and we simply truncate the virtual actuators once we’re done.

It is worth noting that this trick destroys the block-toeplitz with toeplitz block struc-

ture of GTG. Although this does not affect SIMG in any way since G is still sparse,

methods such as Fourier-domain reconstruction [21] or Fourier-based preconditioning

[31] rely on a shift-invariant structure. In order to adapt to a circular aperture, they

must either use a heuristic to correct for edge effects [21] or use an enlarged compu-

tational domain [11, 31]. No special provisions were made to account for the central

obscured region; these measurements are simply zeroed.
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Figure 4.3: Diagram of the PALAO system showing how the actuators and sensors
line up. The black dots are the 241 active actuators, the white dots are virtual
actuators and the +s are the 256 Shack-Hartmann sensors. The shaded region shows
which sensors are obscured because of the aperture shape. Note that there are active
actuators inside the central obscuration.

The PALAO hardware is only equipped for VMM, so we implemented our SIMG

method by using an equivalent VMM reconstructor. This is possible since SIMG is a

sequence of linear operations: Jacobi/Gauss-Seidel iteration, restriction/prolongation,

residual computation, and multiplication by GT . The equivalent VMM reconstructor

has estimation error identical to that of the SIMG method, but does not benefit from

the computational speedup.

A notable benefit of using equivalent VMM reconstructors for testing is that they

can be loaded into PALAO in a matter of seconds. This allows us to perform rapid

sequential testing of different algorithms, and thereby average out the highly variable

atmospheric conditions. The same approach was used in [23, 25]. The 3217-actuator

PALM-3000 system currently in development [3] is being designed with sufficient

computation to allow full VMM reconstructors; this will permit similar experiments

on a much larger system to be conducted in the future.
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Figure 4.4: Block diagram representing the PALAO system. Solid lines indicate
the optical path, while dashed lines indicate the signal path. Note that the fast-
steering mirror mirror (FSM), deformable mirror (DM) and wavefront sensor (WFS)
are represented as summation junctions

4.3.2 Method and Results

On May 19, 2008, we ran tests on three stars that ranged from bright (magnitude 8)

to dim (magnitude 13.5). The sky was exceptionally calm and clear during our exper-

iment, so we chose a very dim star for our final test. For each star, we adjusted the

WFS sample rate, tip/tilt control gains, and DM control gains in order to maximize

the Strehl ratio using the baseline (least-squares) reconstructor; see Table 4.1. The

signal-to-noise ratio (SNR) per subaperture was measured by comparing the average

flux per subaperture to the variance while the wavefront sensor was recording the sky

background frames [12]. We used a Kshort filter (1.99 to 2.30 microns) plus a neutral

density filter appropriate for the star brightness: 0.1% for the two brighter stars, and

no filter for the faintest star.

Table 4.1: System parameters used for each star

Number Catalog designation Brightness Sample Rate T/T SNR

1 Tycho-2 #2563-170-1 V = 8.10 1 kHz 0.30 14.9
2 Tycho-2 #2580-2328-1 V = 10.01 500 Hz 0.40 11.8
3 USNO-B1.0 #1204-0241816 R = 13.5 50 Hz 0.40 3.5

The sample rates and tip/tilt integral gains (T/T) above were chosen to optimize the
instantaneous Strehl ratio. The optimal DM gains were the same for each star: a
proportional gain of 0.25 and an integral gain of 0.01.
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We tested the baseline least-squares reconstructor, and three multigrid schemes.

One of them was GS(1,0)-V, meaning we used a Gauss-Seidel smoother in a V-cycle,

with 1 pre-smoothing iteration and no post-smoothing. The other two were GS(1,1)-

V, and J(1,0)-V, where the J indicates a Jacobi smoother. Each V-cycle is run only

once per measurement. Note that J(1,0)-V is the simplest possible multigrid method.

More complicated variations such as GS(2,2)-W using a W-cycle are also possible.

Alternatively, one can execute multiple iterations of a chosen method per measure-

ment. In the limit, these more complicated (and costlier) variations approach the

baseline least-squares reconstructor. In our experiment, we tested the three simplest

reconstructors and found that their performance was indistinguishable from that of

the baseline least-squares reconstructor. The images produced for a typical recon-

struction look like Figure 4.5.

Figure 4.5: Images of the star Tycho-2 #2563-170-1 (Star number 1 in Table 4.1)
with AO off (on the left) and on (on the right). The Airy disc [12] is visible on the
right, indicating that the atmospheric disturbance has been canceled and the image
is diffraction-limited.

Each reconstructor was tested four times per star, and each test consisted of

acquiring three consecutive 10-second exposure images. This cyclical testing pattern

allows us to average performance over the variable atmospheric conditions, and was

inspired by a similar experiment to test a Fourier-based reconstructor at Palomar

[23]. We also collected images of the sky background by pointing the telescope 60
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arcseconds away from the target star, before and after the reconstructors were tested.

For each image, we computed the Strehl ratio by first subtracting the median

sky background from each frame (eliminating sky photons and detector bias). We

then measured the ratio of the peak brightness of the star to that of a theoretical

diffraction-limited point-spread function with the same total flux and pixel position.

Refer to Figure 4.6 for plots showing the Strehl ratio for three stars. The gaps in time

during the first test are due to restarting the AO system. The four methods tested

performed equally well. This agrees with recent theoretical predictions [17].

The seeing measured by the MASS and DIMM systems at the Palomar Obser-

vatory [14] is plotted over the time of this experiment in Figure 4.7. The higher

variability in Strehl ratio measured for stars 1 and 3 is consistent with the observed

variability in seeing. The average and Strehl ratio for each method is compared for

the second star in Figure 4.8. These data have the lowest variance, so if there is any

appreciable difference between the methods, it would show up here.

4.4 Conclusion and Discussion

This experiment has shown that SIMG methods perform as well as least-squares

reconstruction on a real AO system for both bright and dim guide stars. The major

benefit of using SIMG is reduced computation. For a system with n actuators and

2n sensor measurements, 2n2 multiplications per timestep are required to process the

measurements using VMM. In contrast, about 27n are required for MG-J(1,0)-V or

MG-GS(1,0)-V, and 34n for MG-GS(1,1)-V. This includes the multiplication by GT

and the cost of smoothing, residual computation, restriction, and prolongation on

every level. For PALAO, this results in fewer multiplications by a factor of about 17.

For a 3217-actuator system such as the PALM-3000 [3], using SIMG would reduce

reconstruction computation by a factor of about 220 compared to VMM. Further-

more, if we use a Jacobi smoother, every step of the reconstruction is highly paral-

lelizable; even if the sensor measurements are read sequentially, we can perform all

the fine-grid computations, or roughly 3/4 of the work, while the measurements are

being read in.
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Figure 4.6: Plot comparing the Strehl ratio of various reconstructors on Star 1,2,3
(top, middle, and bottom, respectively). Each point represents a 10-second exposure
image.
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Chapter 5

Decentralized Systems

5.1 Introduction

In decentralized control problems, each controller has access to some subset of the

measurements and must control some subset of the actuators. Such situations are of

practical interest because it is often infeasible to have a single computer process all

the information and make all the decisions. For example, we may be trying to design

an auto-pilot for a swarm of vehicles flying in formation, where each vehicle only has

access to noisy local measurements of the positions of its nearest neighbors. Another

example is packet routing in networks. Each switch must make decisions based on

local information, but the goal is to optimize the efficiency of the whole network.

It has been shown that in some cases, the information constraint imposed by

decentralization can make the control synthesis problem intractable [34, 54]. Much

work has gone into characterizing which decentralized problems are tractable.

When the system to be controlled has a linear plant, quadratic cost, and Gaus-

sian noise (LQG), the optimal centralized controller is linear, and can be computed

efficiently. However, in 1968, Witsenhausen [54] provided a now famous counter-

example showing that for decentralized control, the optimal LQG controller is not

linear in general. Subsequently, Blondel and Tsitsiklis [34] proved that a certain class

of decentralized control problems is NP-hard.

This led to an effort to characterize which decentralized problems have optimal

38
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controllers that are linear. Radner [45] showed that this was true for a special class

called static team decision problems. Ho and Chu [37] generalized Radner’s result

by showing that the larger class of partially nested systems could be converted into

static team decision problems and hence solved easily.

More recently, Rotkowitz and Lall identified the largest known class of tractable

decentralized control problems, which they called quadratically invariant (QI) [49, 50,

47]. Computational tractability and linearity of the optimal controller arise because

in these cases the set of achievable closed-loop maps is convex.

The QI class is broad, but does not cover all tractable decentralized control prob-

lems, nor all the problems for which the optimal controller is linear. For example,

Bansal and Basar [32] showed that by using a different quadratic cost function in the

Witsenhausen counter-example, the problem is still not QI, but has a linear optimal

solution.

In the subsequent chapters, we generalize the notion of quadratic invariance to

include systems defined by multidimensional rational functions, and show that QI

is largely an algebraic concept. We also show that some non-QI problems can be

transformed to QI problems and thereby solved. We call this new class of systems

internally quadratically invariant (IQI).

In the remainder of this chapter we will review relevant mathematical concepts and

show a new converse convexity result: the set {K(I − P22K)−1 | K ∈ S} is convex if

and only if K is quadratically invariant with respect to S. This is important because

K(I − P22K)−1 figures prominently in the formula for the closed-loop map.

5.2 Preliminaries

We now introduce a mathematical framework for representing linear systems. The

fundamental vector space used here is a Banach space, which is consistent with ex-

isting literature [49]. We will introduce our own framework in subsequent chapters.

If X and Y are Banach spaces, we denote by L(X ,Y) the set of all bounded linear

operators A : X → Y . We abbreviate L(X ,X ) to L(X ). A map A ∈ L(X ) is called

invertible if there exists B ∈ L(X ) such that AB = BA = I. Define the resolvent
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Figure 5.1: Closed-loop interconnection between a plant P and a controller K

set ρ(A) = {λ ∈ C | (λI − A) is invertible}. This set is always open, and possibly

disconnected, though it contains all sufficiently large λ ∈ C. We will denote by ρuc(A)

the unbounded connected component of ρ(A).

Suppose U ,W ,Y ,Z are Banach spaces over R. We can think of these spaces as the

controlled inputs, disturbances, measurements, and regulated outputs, respectively.

Suppose we also have the plant P ∈ L(W ×U ,Z × Y) and controller K ∈ L(Y ,U).

We partition P in the conventional way, and connect the controller to the plant as in

Figure 5.1. Since P22 is used frequently, we define the shorthand notation: G = P22.

Note that Figure 5.1 is simply a graphical representation of the equations[
z

y

]
=

[
P11 P12

P21 P22

][
w

u

]
, u = Ky.

The resulting closed-loop map (from w to z) is given by the linear fractional transform

f(P,K) ∈ L(W ,Z), where

f(P,K) = P11 + P12K(I −GK)−1P21.

This interconnection is well-posed whenever I −GK is invertible. More formally, we

may define the set of admissible controllers M ⊂ L(Y ,U) as:

M = {K ∈ L(Y ,U) | (I −GK) is invertible} .

Here, we only consider controllers which are bounded linear operators. Define the set
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N ⊂M , which we will need later:

N = {K ∈ L(Y ,U) | 1 ∈ ρuc(GK)} .

5.2.1 Optimization

It is convenient to define the function hG : M →M ,

hG(K) = −K(I −GK)−1.

We will often omit the subscript G when it is clear by context. Note that h is an

involution . That is, h is its own inverse: h(h(K)) = K for all K ∈ M . It follows

that h is a bijection from M to M .

Our goal is to solve the optimization problem

minimize
∥∥P11 + P12K(I −GK)−1P21

∥∥
subject to K ∈ S ∩M

(5.1)

where S ⊂ L(Y ,U) is a closed subspace. This formulation has a simple subspace

constraint on K, but the objective function is potentially nonconvex. Define the

parameter Q = h(K) and use the involution property of h to rewrite (5.1) as

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ h(S ∩M).

(5.2)

This new formulation has a convex objective function, but a potentially nonconvex

constraint on K.

In the next section, we define quadratic invariance, a property that ensures that

the set h(S ∩M) is convex.
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5.2.2 Quadratic Invariance

We now review the concept of quadratic invariance [49], which will serve as a starting

point for subsequent chapters.

Definition 1. The subspace S ⊂ L(Y ,U) is said to be quadratically invariant

with respect to G if KGK ∈ S for all K ∈ S.

Theorem 2 (from [49]). Suppose that G ∈ L(U ,Y), and S ⊂ L(Y ,U) is a closed

subspace. Further suppose that N ∩ S = M ∩ S. Then S is quadratically invariant

with respect to G if and only if h(S ∩M) = S ∩M .

So if S is quadratically invariant with respect to G, the optimization problem

(5.2) is equivalent to

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S ∩M.

(5.3)

If Q∗ solves this problem, then the K∗ that solves (5.1) is found via K∗ = h(Q∗). In

most practical problems of interest, well-posedness requirements force the optimal Q

to lie within M , and so we may find it by solving the convex optimization problem:

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S.

(5.4)

5.3 Converse Result

We now present a new converse convexity result. Suppose that h is well-defined for

all K ∈ S. Quadratic invariance ensures that the set of achievable closed-loop maps

is convex by providing a necessary and sufficient condition under which h(S) = S.

Thus,

{P11 + P12h(K)P21 | K ∈ S} = {P11 + P12KP21 | K ∈ S} .

In principle, one could also achieve convexity if h(S) is a convex set other than S.

Our result is that this never occurs [43]. In other words: if h(S) = T where T is

convex, then T = S. We begin with some definitions.
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Definition 3. Suppose X is a Banach space over R, and S ⊂ X . We call S a

double-cone if for all x ∈ S and α ∈ R, we have αx ∈ S.

Note that every subspace is a double-cone, but not all double-cones are subspaces.

Definition 4. Suppose X is a Banach space over R, and T ⊂ X . We call T a

star-set if for all x ∈ T and α ∈ [0, 1], we have αx ∈ T .

Note that every convex set is a star-set, but not all star-sets are convex.

Theorem 5. Suppose S ⊂ L(Y ,U) is a closed double-cone, T ⊂ L(Y ,U) is a star-set,

and h(S ∩M) = T ∩M , then T ∩M = S ∩M .

Proof. Fix some K ∈ S ∩M . Since K ∈M , I −GK is invertible, and 1 ∈ ρ(GK).

The resolvent set of a bounded linear operator is an open set, so there exists a

sufficiently small ε > 0 such that 1−α ∈ ρ(GK) for all 0 ≤ α < ε. For any such α, it

follows that I−(1−α)GK is invertible. It follows that (I − (1− α)GK) (I−GK)−1 is

invertible as well. Expanding this expression, we find that it is equal to I −αGh(K).

Thus αh(K) ∈M .

Also, K ∈ S, h(K) ∈ T , and so αh(K) ∈ T whenever 0 ≤ α ≤ 1, because T is a

star-set. It follows that for α ∈ [0, ε), αh(K) ∈ T ∩M .

Now apply h to both sides: h(αh(K)) ∈ h(T ∩M) = S ∩M , where we made

use of the involutive property of h. Expanding h(αh(K)), we find that it is equal to

αK(I − (1−α)GK)−1. Since S is a double-cone, we may multiply this expression by

−1/α, and the result will still lie in S. Thus, −K(I− (1−α)GK)−1 ∈ S. Now define

the function g : [0, ε)→ L(Y ,U) by

g(α) = −K(I − (1− α)GK)−1.

Since S is closed, and g(α) ∈ S for α ∈ [0, ε), then

lim
α→0+

g(α) ∈ S.

Since (I − GK) is invertible, g is right-continuous at 0. So we may take the limit

α→ 0+ by simply evaluating g at α = 0. Thus, we conclude that h(K) ∈ S. Now h
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is a bijection from M to M , and so we actually have h(K) ∈ S ∩M . Since K was an

arbitrary element of S ∩M , it follows that h(S ∩M) ⊂ S ∩M . Using the involutive

property of h once more, h(S ∩M) = S ∩M , as required.

Since every convex set is a star-set, and every subspace is a double-cone, we can

state the following corollary to Theorem 5:

Corollary 6. Suppose S ⊂ L(Y ,U) is a closed subspace, T ⊂ L(Y ,U) is convex, and

h(S ∩M) = T ∩M . Then h(S ∩M) = S ∩M .

Finally, we may combine the existing quadratic invariance result (Theorem 2)

with the above result, and obtain a strong result connecting convexity to quadratic

invariance in the Banach space case.

Corollary 7. Suppose G ∈ L(U ,Y) and S ⊂ L(Y ,U) is a closed subspace such that

I −GK is invertible for all K ∈ S, and M = N . Then the set

{
K(I −GK)−1

∣∣ K ∈ S}
is convex if and only if S is quadratically invariant with respect to G.

Proof. Note that N ∩ S = M ∩ S = S in this case. Sufficiency is immediate from

Theorem 2. Necessity holds because Theorem 5 implies that if h(S) is convex, then

h(S) = S. Then, Theorem 2 implies that S must be quadratically invariant with

respect to G.

In the following chapter, we give an algebraic version of both the basic QI result

and our new convexity result.
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Algebraic Framework

6.1 Introduction

We saw in Chapter 5 that subject to some technical conditions, quadratic invariance

is a necessary and sufficient condition under which the set h(S) is convex. We treated

the Banach space case, but the QI result holds in more generality for causal maps on

extended spaces [50]. This encompasses continuous and discrete systems, stable or

unstable, and even systems with delays.

In both the extended case and the Banach case, the results are proven using tools

from analysis. Since the maps in question are potentially infinite-dimensional, ques-

tions of convergence arise. One must also take care in defining appropriate topologies

so that the notion of convergence is the correct one. Both frameworks require S to

be a closed subspace, which is problematic when we seek controllers expressible as

rational transfer functions.

Since the QI result holds in a very broad sense, and the QI condition is algebraic

in nature, it encourages one to seek an algebraic framework in which the results can

be expressed naturally. In this chapter, we present such a framework; we consider

plants and controllers to be matrices whose entries belong to a commutative ring.

A similar framework was suggested [53], which generalizes the notion of a transfer

function matrix and applies it to feedback stabilization. Algebraic systems theory

has a long and rich history, dating back to the 1960’s [39]. Our work appears in [41].
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In Section 6.2, we cover some required mathematical background. In Section 6.3,

we present results that hold in the general commutative ring case. In Section 6.4, we

consider a more specific ring; multidimensional rational functions.

6.2 Rings

A commutative ring is a tuple (R,+, ·) consisting of a set R, and two binary operations

which we call addition and multiplication, respectively. The following properties hold

for all a, b, c ∈ R. First, (R,+) is an abelian group:

i) Closure: a+ b ∈ R

ii) Commutativity: a+ b = b+ a

iii) Associativity: a+ (b+ c) = (a+ b) + c

iv) Additive identity: there exists 0R ∈ R such that a+ 0R = 0R + a = a

v) Additive inverse: there exists −a ∈ R such that a+ (−a) = (−a) + a = 0R

Next, (R, ·) is a commutative monoid:

vi) Closure: a · b ∈ R

vii) Commutativity: a · b = b · a

viii) Associativity: a · (b · c) = (a · b) · c

ix) Multiplicative identity: there exists 1R ∈ R such that a · 1R = 1R · a = a

Finally, the addition and multiplication operations satisfy two distributive properties:

x) a · (b+ c) = a · b+ a · c

xi) (a+ b) · c = a · c+ b · c
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We will often omit the multiplication symbol, and simply concatenate the variables.

So ab should be interpreted as a ·b. We will use R to denote an arbitrary commutative

ring satisfying the axioms above.

If some element a ∈ R has a multiplicative inverse in R, a is called a unit . The

set of all units of R forms a group under multiplication, and is denoted U(R). If

U(R) = R \ {0R}, then R is a field.

We will often arrange elements of R into a matrix, and specify dimensions as a

superscript. For example, Rm×n denotes the set of m× n matrices where each entry

is an element of R. Some real matrix concepts extend naturally to matrices over

R. The most basic are matrix addition and matrix multiplication. The determinant

det : Rn×n → R is well defined, since for any A ∈ Rn×n, det(A) is a polynomial

in the entries Aij ∈ R. The classical adjoint adj : Rn×n → Rn×n also makes sense,

because its definition is in terms of determinants of submatrices. For any A ∈ Rn×n,

the fundamental property of adjoints extends to the commutative ring case

A adj(A) = adj(A)A = det(A)IR.

where the matrix IR is the identity matrix in Rn×n. That is, the matrix whose

diagonal and off-diagonal entries are 1R and 0R, respectively. We will use 0n×nR to

denote the n× n matrix whose entries are all 0R.

The characteristic polynomial of a matrix A ∈ Rn×n is the function pA : R→
R defined by pA(x) = det(A− xIR). In general, pA is a polynomial of degree n:

pA(x) = p0 + p1x+ · · ·+ pnx
n,

where pi ∈ R.

We will also use a notion that generalizes that of a subspace. An R-module

consists of an abelian group (H,+) and an operation R × H → H (called scalar

multiplication), such that for all r, s ∈ R and x, y ∈ H,

i) r(x+ y) = rx+ ry

ii) (r + s)x = rx+ sx
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iii) (rs)x = r(sx)

iv) 1Rx = x

In particular, a subset S ⊂ Rn×m is an R-module if it is closed under addition and

satisfies the property rX ∈ S for all X ∈ S and r ∈ R.

The most important fact about commutative rings that we will use is the Cayley-

Hamilton theorem. This well-known result for real matrices also holds in Rn×n.

Lemma 8. (Cayley-Hamilton) Suppose A ∈ Rn×n. Define the function p̃A : Rn×n →
Rn×n as

p̃A(X) = p0IR + p1X + · · ·+ pnX
n,

where pi are the coefficients of the characteristic polynomial pA(x). Then p̃A(A) =

0n×nR . In other words, A satisfies its own characteristic polynomial.

Proof. See for example, [44, p. 7-8].

The concept of a matrix inverse can also be extended to matrices over R. A matrix

A ∈ Rn×n is invertible if det(A) ∈ U(R). In this case, the inverse is unique and

equal to

A−1 = (det(A))−1 adj(A).

We can use the Cayley-Hamilton to express the adjoint and hence the inverse as finite

sums as well.

Lemma 9. Suppose A ∈ Rn×n is invertible. There exist p1, . . . , pn ∈ R such that

− adj(A) = p1IR + p2A+ · · ·+ pnA
n−1.

Proof. Using Lemma 8, we know that

p0IR + p1A+ · · ·+ pnA
n = 0n×nR ,
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where the pi satisfy det(A − xIR) = p0 + p1x + . . . pnx
n. Setting x = 0R, we have

p0 = det(A). Multiply by adj(A) on the right, and obtain

det(A) adj(A) + p1A adj(A) + . . . pnA
n adj(A) = 0n×nR .

Applying the fundamental property of the classical adjoint: adj(A)A = A adj(A) =

det(A)IR, we have

det(A)
(
adj(A) + p1IR + p2A+ · · ·+ pnA

n−1) = 0n×nR .

Since A is invertible, det(A) ∈ U(R) and so det(A) has a multiplicative inverse.

Multiply by this inverse and obtain

− adj(A) = p1IR + p2A+ · · ·+ pnA
n−1,

as required.

6.3 QI for Rings

In this section, we take the algebraic notion of quadratic invariance [49, 50], and show

how it fits into the framework of matrices over commutative rings. Our definition of

quadratic invariance for rings is similar to the definition for Banach spaces.

Definition 10. Suppose G ∈ Rm×n and S ⊂ Rn×m is an R-module. S is quadrati-

cally invariant with respect to G if for all K ∈ S, we have KGK ∈ S.

We also define M and h in a manner analogous to the one presented in Chapter 5.

For a particular G ∈ Rm×n, define the set M ⊂ Rn×m as:

M =
{
K ∈ Rn×m ∣∣ (IR −GK) is a unit

}
.

Also define the function hG : M →M as

hG(K) = −K(IR −GK)−1.
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Our main approach is to apply the Cayley-Hamilton theorem to show that h(K)

can be expressed as a finite sum of terms. When S is quadratically invariant under

G, each term in the sum belongs to S and so h(S ∩M) = S ∩M .

Lemma 11. Suppose G ∈ Rm×n and S ⊂ Rn×m is an R-module. Further suppose

that 2R ∈ U(R). If S is quadratically invariant with respect to G, then for all K ∈ S:

K(GK)i ∈ S for i = 1, 2, . . .

Proof. The result follows by induction using the identity [49]:

K(GK)i+1 = 2−1R
[
(K +K(GK)i)G(K +K(GK)i)

−KGK −
(
K(GK)i

)
G
(
K(GK)i

)]
,

where 2−1R is the multiplicative inverse of 1R + 1R, which exists by assumption.

Theorem 12. Suppose G ∈ Rm×n and S ⊂ Rn×m is an R-module. Further suppose

that 2R ∈ U(R). If S is quadratically invariant with respect to G, then

h(S ∩M) = S ∩M

Proof. Suppose K ∈ S ∩M . Using Lemma 9, write:

h(K) = − (det(IR −GK))−1K adj(IR −GK)

= (det(IR −GK))−1
m∑
i=1

piK(IR −GK)i−1

=
m∑
i=1

hiK(GK)i−1,

where the hi ∈ R are obtained by expanding each (IR −GK)i−1 term and collecting

like powers of GK. All terms in the sum are in S, via Lemma 11. Since S is an

R-module, it follows that h(K) ⊂ S∩M . Using the involutive property of h, we have

h(S ∩M) = S ∩M .
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Counterexample. We will now show that the requirement 2R ∈ U(R) is necessary.

Consider the ring of integers Z, and define:

S =




2x y z

y z 0

z 0 0


∣∣∣∣∣∣∣∣ x, y, z ∈ Z

 , G =


0 0 0

0 0 1

0 1 0

 .
It is easy to check that S is a Z-module, and is quadratically invariant with respect

to G. Now consider a particular element of S:

K0 =


0 0 1

0 1 0

1 0 0

 .
Note that det(I − GK0) = 1, so K0 ∈ S ∩M . However, h(K0) /∈ S, so Theorem 12

does not hold. Indeed, K0(GK0)
2 /∈ S, so Lemma 11 does not hold either. The

requirement that 2R ∈ U(R) can be dropped if we strengthen our notion of quadratic

invariance. One way to do this is to require that K1GK2 ∈ S for all K1, K2 ∈ S.

This result shows that in a purely algebraic setting, quadratic invariance implies

that the set of achievable closed-loop maps is affine. For the remainder of the chapter,

we turn our attention to a more specialized commutative ring: rational functions.

6.4 Rational Functions

We now turn our attention to rational functions of multiple variables. This leads to

quadratic invariance results without any closure requirement on S. Furthermore, the

framework is flexible enough to allow systems with delays or spatiotemporal systems

(see Section 6.6).

Let R(s) be the set of rational functions in the variables s = (s1, s2, . . . , sk), with

coefficients in R. We say that r ∈ R(s) is proper if for every i, the degree of si in

the numerator is less than or equal to the degree of si in the denominator. The set
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of proper rationals will be denoted R(s)p. For example, the rational function

s1s2s3
s21 + 2s2 + s3

is proper. Similarly, we define R(s)sp to be the set of strictly proper rationals. Finally,

R(s)n is the set of rationals that are proper but not strictly proper. That is, each

variable si has the same degree in the numerator and denominator. As a convention,

0 ∈ R(s)sp. We may alternatively characterize properness by using limits. We state

the following lemma without proof.

Lemma 13. Suppose h ∈ R(s). For every i ∈ {1, . . . , k}, Let

s̄i = {s̄1, . . . , s̄i−1, s̄i+1, . . . , s̄k} ⊂ R

be some assignment of the remaining k − 1 variables. Define

ci(s̄
i) = lim

si→∞
h(s̄1, . . . , s̄i−1, si, s̄i+1, . . . , s̄k).

We have:

h ∈ R(s)p ⇐⇒

for all i ∈ {1, . . . , k},
ci(s̄

i) is finite for almost all s̄i

h ∈ R(s)sp ⇐⇒

for all i ∈ {1, . . . , k},
ci(s̄

i) = 0 for almost all s̄i

The definition of invertibility follows from the definition used with R. Since

U(R(s)) = R(s) \ {0}, a matrix A ∈ R(s)n×n is invertible if det(A) is not identi-

cally zero. It follows that R(s) is in fact a field. The set R(s)p ⊂ R(s) is closed under

addition and multiplication, but not inversion. It is therefore a subring of R(s). The

invertible proper elements are precisely the set R(s)n = U(R(s)p). The remaining

elements are strictly proper, R(s)sp ⊂ R(s)p, and are an ideal of R(s)p.
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Lemma 14. Suppose G ∈ R(s)m×nsp and K ∈ R(s)n×mp . Then (I −GK) is invertible,

and (I −GK)−1 ∈ R(s)m×mp .

Proof. By Lemma 13, we have that for any i,

lim
si→∞

det(I −GK) = det(I) = 1

for almost any assignment of the remaining variables {s1, . . . , si−1, si+1, . . . , sk}. This

holds because G is strictly proper and K is proper. Applying Lemma 13 once more,

we conclude that det(I −GK) ∈ R(s)n and so (I −GK) is invertible. Furthermore,

(I − GK) ∈ R(s)p. Consequently, adj(I − GK) ∈ R(s)p because R(s)p is a subring.

It follows that (I −GK)−1 ∈ R(s)p.

6.5 QI for Rationals

In this section, we prove our main result: for rational functions, quadratic invariance

is a necessary and sufficient condition under which h(S) is equal to S.

Lemma 15. Suppose G ∈ R(s)m×nsp and K ∈ R(s)n×mp . Then there exist h1, . . . , hm ∈
R(s)n such that:

h(K) =
m∑
i=1

hiK(GK)i−1.

Proof. By Lemma 14, (I − GK) is invertible, and so h(K) is always well-defined.

We may express it in terms of the classical adjoint:

h(K) = −K(I −GK)−1 =
−1

det(I −GK)
K adj(I −GK),
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and apply Lemma 9 to express the adjoint as a finite sum:

h(K) =
1

det(I −GK)

m∑
i=1

piK(I −GK)i−1

=
1

det(I −GK)

m∑
i=1

pi

i∑
j=1

(−1)j−1
(
i− 1

j − 1

)
K(GK)j−1

=
m∑
j=1

[
(−1)j−1

det(I −GK)

m∑
i=j

(
i− 1

j − 1

)
pi

]
︸ ︷︷ ︸

hj

K(GK)j−1.

The next step is to show that hj ∈ R(s)n. We will do this via Lemma 13 by showing

that the limits si → ∞ are finite and nonzero for almost all assignments of the

remaining variables. Recall that the pi are defined in terms of a determinant:

p(x) = det(I −GK − xI) = p0 + p1x+ · · ·+ pmx
m.

Now apply Lemma 13. For every i, and any x ∈ R,

lim
si→∞

det(I −GK − xI) = (1− x)m

for almost all s̄i. Equating coefficients, we find

lim
si→∞

pi(s̄1, . . . , s̄i−1, si, s̄i+1, . . . , s̄k) = (−1)i
(
m

i

)
for almost all s̄i. Using this fact, we may now evaluate the limit of each hj as si →∞.

lim
si→∞

hj(s̄1, . . . ,s̄i−1, si, s̄i+1, . . . , s̄k)

= (−1)j−1
m∑
i=j

(
i− 1

j − 1

)(
m

i

)
(−1)i

= −1

for almost all s̄i, and we conclude that hj ∈ R(s)n, as required.
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Theorem 16. Suppose G ∈ R(s)m×nsp , and S ⊂ R(s)n×mp is an R(s)p-module.

S is QI with respect to G ⇐⇒ h(S) = S.

Proof. (=⇒) Choose K ∈ S. Using Lemma 15, write:

h(K) =
m∑
j=1

hjK(GK)j−1

where hj ∈ R(s)n. By Lemma 11, K(GK)j ∈ S. Since S is an R(s)p-module, the

finite sum also belongs to S, and we conclude that h(S) ⊂ S. By the involutive

property of h, it follows that h(S) = S.

(⇐=) Suppose conversely that S is not QI with respect to G. So there must exist

some K0 ∈ S with K0GK0 /∈ S. Let r ∈ R and define K = rK0. Note that K ∈ S,

since S is an R(s)p-module. Now write:

h(K) =
m∑
j=1

hjK(GK)j−1 =
m∑
j=1

rjhj(r)K0(GK0)
j−1︸ ︷︷ ︸

Fj

.

Note that hj(r) depends on r. We have Fj ∈ R(s)n×msp as well. Assume that h(K) ∈ S
for every r. Then in particular, for any choice of r1, r2, . . . , rm ∈ R such that the

quantities hi(rj) are well-defined, we have:

h1(r1)F1 + r1h2(r1)F2 + · · ·+ rm−11 hm(r1)Fm ∈ S
...

h1(rm)F1 + rmh2(rm)F2 + · · ·+ rm−1m hm(rm)Fm ∈ S.

(6.1)

Any linear combination of the sums on the left-hand side must also belong to S.



56 CHAPTER 6. ALGEBRAIC FRAMEWORK

Consider the matrix

C =


h1(r1) r1h2(r1) · · · rm−11 hm(r1)

h1(r2) r2h2(r2) · · · rm−12 hm(r2)
...

...
. . .

...

h1(rm) rmh2(rm) · · · rm−1m hm(rm)


By Lemma 15, it is a matrix of rational functions. In fact, C ∈ R(s)m×mp . We would

like to verify that C is invertible, so we apply Lemma 13. This is straightforward

since we already know the limits of the hj from Lemma 15. For every i and for almost

all s̄i,

lim
si→∞

det(C(s̄1, . . . , s̄i−1, si, s̄i+1, . . . , s̄k)

= (−1)m det


1 r1 · · · rm−11

1 r2 · · · rm−12
...

...
. . .

...

1 rm · · · rm−1m


= (−1)m

∏
1≤i<j≤m

(rj − ri),

where we used a property of Vandermonde matrices to evaluate the determinant. As

long as we choose distinct ri, det(C) tends to a finite and nonzero limit, and so C

is invertible, and C−1 ∈ R(s)m×mp . If we treat the rows of C−1 as coefficients, and

compute the corresponding linear combinations of (6.1), we obtain m equations:

Fi ∈ S i = 1, . . . ,m.

In particular, we have F2 ∈ S. But F2 = K0GK0 /∈ S, a contradiction. We conclude

that our assumption was incorrect, so there exists some K for which h(K) /∈ S.
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6.6 Examples

6.6.1 Sparse Controllers

The simplest class of systems that we can analyze are systems with rational transfer

functions subject to controllers with sparsity constraints. It is clear that if every

nonzero entry in the controller is required to be a proper rational function in R(s)p,

the set S of allowable controllers is an R(s)p-module.

6.6.2 Network with Delays

Consider a distributed system where the subsystems affect one another via delay

constraints. We wish to design a decentralized controller subject to communication

delay constraints between subcontrollers.

Introduce the delay operator d that represents a delay of one time unit. The

plant G and controller K are therefore rational functions in s and d. The constraint

K ∈ R(s, d)p naturally guarantees that negative delays are forbidden, thus enforcing

causality.

Define the delay of a transfer function as the difference between the degree of d

in its denominator and numerator. For example,

delay

(
1

sd+ 2

)
= 1 and delay

(
s+ d2

s2d+ d5

)
= 3.

As a convention, delay(0) = ∞. We can impose delay constraints on the controller

using a set of the form

S = {K ∈ R(s, d)p | delay(Kij) ≥ aij} ,

where aij ≥ 0 is the minimum delay between subcontrollers i and j. One can verify

that S is an R(s, d)p-module, and so we may apply Theorem 16 to derive condi-

tions under which the problem is convex. Similar results proved using very different

methods can be found in [48].
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6.6.3 Multidimensional Systems

Rational functions in multiple variables with mixed properness constraints are valid

in our framework. For example, suppose our transfer functions depend on two sets of

variables: R = R(s1, . . . , sm, z1, . . . , zn). Further suppose that we impose a properness

constraint on s1, . . . , sm, but not on z1, . . . , zn. This might occur, for example, if

some of the variables are spatial, and it doesn’t make sense to impose a properness

constraint on them. This framework is used to represent spatiotemporal dynamics in

a variety of important papers [46, 36, 33, 35].

The set R is indeed a commutative ring, and so we may apply Theorem 12.

Theorems 16 and 24 hold as well, with appropriate modifications to the notation.



Chapter 7

Internal Quadratic Invariance

7.1 Introduction

In the previous two chapters, we extended the notion of quadratic invariance to a gen-

eral algebraic framework. When the decentralization constraint set is quadratically

invariant, the set of achievable closed-loop maps is affine. In this chapter, we develop

the notion of internal quadratic invariance (IQI). When a constraint set is IQI, it

may be transformed into an equivalent QI set even though it is not initially QI. We

show that the IQI property is easy to test, and is more general than QI [40, 42, 41].

7.2 Preliminaries

In this chapter, we use the same the rational function framework as in Chapter 6,

but we will only treat the case of rational functions of a single variable. To simplify

notation, we will let R denote the set of rational functions in z. We begin with some

additional definitions.

If A ∈ Rm×n
p , define the range and nullspace of A as

rangeA = {Ax | x ∈ Rn
p

}
nullA =

{
x ∈ Rn

p

∣∣ Ax = 0
}
.

59
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These sets are both Rp-modules. Also, we call a matrix W ∈ Rn×n a projector if

W 2 = W . We will also require the concept of normal rank . A matrix A ∈ Rm×n

has normal rank k if A(z) is a rank-k matrix for all but finitely many z ∈ C. For an

introduction to normal rank and related concepts, see [38].

7.3 Main Result

Our main result is that subject to a condition we call internal quadratic invariance,

the set of achievable closed-loop maps is affine, and thus amenable to convex search.

Definition 17. Let P ∈ Rm×n
sp and S ⊂ Rn2×m2

p be an Rp-module. Let W1 and W2

be any projectors such that

rangeW1 = range
[
P21 P22

]
nullW2 = null

[
P12

P22

]
.

(7.1)

We say S is internally quadratically invariant (IQI) with respect to P if W2SW1

is QI with respect to P22.

Proper projectors satisfying (7.1) always exist. Furthermore, internal quadratic

invariance does not depend on the particular choice of projectors Wi. In other words,

internal quadratic invariance is a property of P and S alone. Before we can prove

these claims, we need two additional Lemmas.

Lemma 18. Suppose G ∈ Rm2×n2. Let W1 and W2 be projectors.

W1GW2 = G ⇐⇒

 rangeG ⊂ rangeW1

nullG ⊃ nullW2

.

Proof. Suppose rangeG ⊂ rangeW1. Let x ∈ Rn2 . Now Gx ∈ rangeG ⊂ rangeW1.

So there exists some y ∈ Rn2 such that Gx = W1y. Since W1 is a projector, W1Gx =

W 2
1 y = W1y = Gx. Therefore, W1G = G. Conversely, suppose W1G = G. Then
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rangeG ⊂ rangeW1G = rangeW1. Similarly, we have W T
2 G

T ⇐⇒ rangeGT ⊂
rangeW T

2 . The result follows from taking orthogonal complements and using range-

nullspace duality.

Lemma 19. Suppose P ∈ Rm×n
sp and S ⊂ Rn2×m2

p is an Rp-module. Further suppose

that S is internally quadratically invariant with respect to P , and let W1, W2 be

projectors satisfying (7.1). Then,

i)

[
I 0

0 W1

]
P

[
I 0

0 W2

]
= P

ii) h(W2SW1) = W2h(S)W1.

Proof. The range and nullspace requirement for W1 and W2 imply that

rangeP ⊂ range

[
I 0

0 W1

]
and nullP ⊃ null

[
I 0

0 W2

]
.

Applying Lemma 18, we conclude that[
I 0

0 W1

]
P

[
I 0

0 W2

]
= P.

In particular, we have W1P22W2 = P22. Using this identity, we have

h(W2KW1) = −(W2KW1) [I − P22(W2KW1)]
−1

= −W2K [I −W1P22W2K]−1W1

= −W2K [I − P22K]−1W2

= W2h(K)W1.

We will now show that internal quadratic invariance does not depend on the choice

of projectors W1 and W2, it is a property of P and S alone. First, we show the required

existence property, that it is always possible to construct projectors satisfying (7.1).
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Lemma 20. Suppose A ∈ Rm×n. There exists a proper projector W ∈ Rm×m
p with

the same range (or nullspace) as A.

Proof. We may factor A as

A =
[
U1 U2

]
︸ ︷︷ ︸

U

[
M1 0

0 0

]
︸ ︷︷ ︸

M

[
V T
1

V T
2

]
︸ ︷︷ ︸

V

,

where U and V are unimodular polynomial matrices and M is the Smith-McMillan

form of A [38]. Then, it is straightforward to verify that W1 = U1(U
T
1 U1)

−1UT
1 is a

projector with rangeW1 = rangeA. Similarly, W2 = V1(V
T
1 V1)

−1V T
1 is a projector

with nullW2 = nullA.

One can show that the limit limz→∞W (z) is always a constant for projectors

constructed in this fashion, and thus W is proper.

Next, we show that for fixed P and S, whether or not W2SW1 is QI with respect to

G does not depend on our choice of projectors.

Lemma 21. Suppose P ∈ Rm×n, and S ⊂ Rn2×m2 is an R-module. Suppose further

that Wi and Zi are two sets of projectors satisfying (7.1). Then the two following

statements are equivalent

i) W2SW1 is QI with respect to G

ii) Z2SZ1 is QI with respect to G.

Proof. Since W1 and Z1 have the same range, each column of Z1 is a linear

combination of the columns of W1. Therefore we can write Z1 = W1X for some

X ∈ Rm2×m2 . Similar arguments imply that W T
2 and ZT

2 have the same range, so we

may similarly conclude that Z2 = YW2 for some Y ∈ Rn2×n2 .

Now suppose that W2SW1 is QI with respect to G. Then for all K ∈ S,

(W2KW1)G(W2KW1) ∈ W2SW1.
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Multiply on the left by Y and on the right by X, and deduce that

(Z2KW1)G(W2KZ1) ∈ Z2SZ1.

From Lemma 19, we have

W1GW2 = Z1GZ2 = G

and so

(Z2KZ1)G(Z2KZ1) ∈ Z2SZ1,

and we conclude that Z2SZ1 is QI with respect to G. The same argument holds if

we interchange W and Z, and this completes the proof.

Quadratic invariance is only a property of the information constraint S and the

P22 block of the plant. However, internal quadratic invariance also depends on the

other blocks Pij of the plant. We now show that IQI is weaker than QI. That is, all

QI systems are IQI.

Theorem 22. If S is QI with respect to G. Then S is IQI with respect to P .

Proof. Suppose S is QI with respect to G. Then for any K ∈ S, KGK ∈ S. Now

choose W1, W2 as in Definition 17. It follows that W2KGKW1 ∈ W2SW1. We also

have from Lemma 19 that W1GW2 = G. Thus, (W2KW1)G(W2GW1) ∈ W2SW1.

Most notably, if
[
P21 P22

]
and

[
P12

P22

]
have full normal rank, both projectors

W1 and W2 as defined in (7.1) are the identity. In this case, the two notions are

equivalent: S is IQI with respect to P if and only if S is QI with respect to G.

A simple consequence of Theorem 16 is that we may pre- and post-multiply by

matrices W1 and W2, and the result will still hold.

Corollary 23. Suppose G ∈ Rm×n
sp , S ⊂ Rn×m

p is an Rp-module, and W1 ∈ Rm×m
p ,

W2 ∈ Rn×n
p are square matrices. Then,

W2SW1 is QI with respect to G ⇐⇒ h(W2SW1) = W2SW1.



64 CHAPTER 7. INTERNAL QUADRATIC INVARIANCE

Proof. It is straightforward to verify that if S is an Rp-module, then so is W2SW1.

The proof follows immediately from Theorem 16.

We can now extend Theorem 16 to the IQI case. By choosing W1 and W2 in a

particular way, we can find a sufficient condition under which the closed-loop map

is convex. This condition is weaker than the QI condition, meaning that it is more

general.

Theorem 24. Let P ∈ Rm×n
sp , and suppose S ⊂ Rn2×m2

p is an Rp-module. If S is

IQI with respect to P , then

P12h(S)P21 = P12SP21.

Proof. Let W1 and W2 be proper projectors satisfying (7.1). Using Corollary 23,

we have h(W2SW1) = W2SW1. Applying Lemma 19, this is equivalent to

W2h(S)W1 = W2SW1.

Multiply on the left by P12 and on the right by P21. Using Lemma 19 again, we have

that P12W2 = P12 and W1P21 = P21. Therefore,

P12h(S)P21 = P12SP21.

Theorem 24 is the main result of this chapter, and shows us that internal quadratic

invariance leads to an affine set of achievable closed-loop maps. In Section 7.5, we

will show how this theorem is applied to solve controller synthesis problems. First,

however, will will present an alternative interpretation of IQI using reduction rather

than projection.
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7.4 Model Reduction Interpretation

As we saw in this chapter, the QI property depends on our choice of representation.

If we have a plant P and two different information constraints S and S̃, it is possible

that (P, S) and (P, S̃) have the same set of achievable closed-loop maps. Furthermore,

it is possible for one of these pairs to be QI while the other pair is not. In this section,

we show that if (P, S) is IQI but not QI, we can construct an equivalent system (P̃ , S̃)

that is QI, and has fewer inputs and outputs than (P, S).

This idea of finding a reduced representation for a system also comes up in state-

space theory. In state-space, a transfer function may be represented by many different

choices of matrices (A,B,C,D). However, the minimal representation will have the

smallest A possible.

We begin by observing that Lemma 20 still holds if we do not require W1 and W2

to be projectors. Indeed, if we define U1 and V1 as in Lemma 20, then we can instead

set:
rangeU1 = range

[
P21 P22

]
nullV T

1 = null

[
P12

P22

]
.

(7.2)

The difference is that U1 and V1 are now skinny and have full normal rank. These

definitions determine a matrix factorization similar to that of Lemma 19, but with a

different P on the right:[
P11 P12

P21 P22

]
=

[
I 0

0 U1

][
P̃11 P̃12

P̃21 P̃22

][
I 0

0 V T
1

]
.

It is clear that P̃ can be computed via the formula:

[
P̃11 P̃12

P̃21 P̃22

]
=

[
I 0

0 U †1

][
P11 P12

P21 P22

][
I 0

0 V †1

]T
, (7.3)

where we have defined U †1 = (UT
1 U1)

−1UT
1 and similarly for V †1 . Using these identities,
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we can compute the set of achievable closed-loop maps:

P11 + P12K [I − P22K]−1 P21 = P̃11 + P̃12V
T
1 K

[
I − U1P̃22V

T
1 K

]−1
U1P̃21

= P̃11 + P̃12(V
T
1 KU1)

[
I − P̃22(V

T
1 KU1)

]−1
P̃21.

Thus, we may draw two equivalent block diagrams for our system; see Figure 7.1.

P11 P12

P21 P22

K

u

w

y

z P̃11 P̃12

P̃21 P̃22

V T
1 KU1

u

w

y

z

Figure 7.1: Two equivalent block diagrams

We can define a new information constraint S̃ = V T
1 SU1, which applies to the

P̃ plant. Notice that because U1 and V1 are skinny matrices, (P̃ , S̃) will have fewer

inputs and outputs than (P, S). In this sense, we may think of it as a reduced system.

The key result of this section is that testing internal quadratic invariance of (P, S) is

equivalent to testing quadratic invariance of (P̃ , S̃). The result is stated formally in

Theorem 25.

Theorem 25. Suppose P ∈ Rm×n
sp and S ⊂ Rn×m

p is an Rp-module. Let U1 and V1

be skinny and full-normal-rank polynomial matrices that satisfy (7.2). Now compute

P̃ using (7.3) and let S̃ = V T
1 SU1. Then S is IQI with respect to P if and only if S̃

is QI with respect to P̃22.

Proof. (=⇒) Suppose S is IQI with respect to P . Then for any choice of

projectors W1 and W2 satisfying (7.1), we have that W2SW1 is QI with respect

to P22. In particular, we saw in Lemma 20 that one valid choice is W1 = U1U
†
1

and W2 = (V1V
†
1 )T . Applying this choice to the definition of QI, we find that

(W2KW1)P22(W2KW1) ∈ W2SW1. Substituting, we obtain

V †1
T
V T
1 KU1U

†
1P22V

†
1

T
V T
1 KU1U

†
1 ∈ V †1

T
V T
1 SU1U

†
1 . (7.4)
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Now multiply on the left by V T
1 and on the right by U1, and simplify.

V T
1 KU1U

†
1P22V

†
1

T
V T
1 KU1 ∈ V T

1 SU1.

Recall from (7.3) that P̃22 = U †1P22V
†
1

T
. So we have

V T
1 KU1P̃22V

T
1 KU1 ∈ V T

1 SU1. (7.5)

In other words, S̃ is QI with respect to P̃22, as required.

(⇐=) Suppose that S̃ is QI with respect to P̃22. Begin with (7.5), multiply on the

left by V †1
T

and on the right by U †1 , and obtain (7.4).

In other words, if we want to use quadratic invariance as a test for tractability,

we should always perform the test on the reduced system (P̃ , S̃). A reduced system

exists whenever the matrices U1 or V1 are strictly skinny. And this happens when

either
[
P21 P22

]
or

[
P12

P22

]
is not full-normal-rank, respectively. In Section 7.6, we

show a numerical example that illustrates reduction.

7.5 IQI and Optimization

In this section, we show how to solve optimal control synthesis problems when the

information constraint S is internally quadratically invariant with respect to the plant

P . Return to the optimization formulation (5.2), but now suppose that P ∈ Rsp:

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ h(S).

We saw that in the QI case, Theorem 16 guarantees us that h(S) = S. So the problem

may be transformed into:

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S.

(7.6)
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Once we have found the optimal Qopt, we recover K via Kopt = h(Qopt). In the IQI

case, Theorem 24 guarantees us that P12h(S)P21 = P12SP21, even though h(S) 6= S.

So the optimization problem in the IQI case reduces to (7.6), just as in the QI case.

The main difference is that in the IQI case, h(S) 6= S, so we must do something

different to obtain Kopt. The procedure is explained in the following Theorem.

Theorem 26. Suppose P ∈ Rm×n
sp and S ⊂ Rn×m

p is an Rp-module. Further suppose

that S is internally quadratically invariant with respect to P , and let W1, W2 be

projectors satisfying (7.1). Let Kopt be the solution to the optimization problem

minimize
∥∥P11 + P12K(I −GK)−1P21

∥∥
subject to K ∈ S.

(7.7)

Then Kopt satisfies the constrained linear equations

W2KoptW1 = h(W2QoptW1), (7.8)

where Qopt is the solution to the optimization problem

minimize
∥∥P11 − P12QP21

∥∥
subject to Q ∈ S.

(7.9)

Proof. Once we have found Qopt ∈ S that solves (7.9), then we know from

Corollary 23 that there exists some Kopt ∈ S that satisfies

h(W2KoptW1) = W2QoptW1. (7.10)

If we apply h to this equation, we find that Kopt must satisfy (7.8), as required. We
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can verify that the Kopt obtained from this equation is optimal by computing:

P11 − P12QoptP21 = P11 − P12W2QoptW1P21 (Lemma 19, part i)

= P11 − P12h(W2KoptW1)P21 (Equation (7.10))

= P11 − P12W2h(Kopt)W1P21 (Lemma 19, part ii)

= P11 − P12h(Kopt)P21 (Lemma 19, part i).

Thus the cost we optimized to find Qopt is the same as the cost we were trying to

optimize in (7.7).

In other words, we can solve IQI optimization problems by first solving the simpler

optimization (7.9) for Qopt, and then solving the linear equations (7.8) for Kopt. We

new present some examples of internally quadratically invariant systems.

7.6 Examples

7.6.1 Simple Example

Consider the following plant and information constraint:

P =


a b1 b2 b2

c1 g1 0 0

c1 g1 0 0

c2 g2 g3 g3

 , S =



k1 0 0

0 k2 0

0 0 k3


∣∣∣∣∣∣∣∣ ki ∈ R

 ,

where a, bi, ci, gi are real numbers. Note that the dotted lines in P are simply there

to show how P is partitioned into its four blocks. It does not denote a state-space

notation. Since S is diagonal, it is clear that KP22K will never be diagonal, and thus

S is not QI with respect to P22. Now compute W1, W2 using Definition 17 and U1, V1
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using (7.2):

range


c1 g1 0 0

c1 g1 0 0

c2 g2 g3 g3

 = range


1
2

1
2

0
1
2

1
2

0

0 0 1


︸ ︷︷ ︸

W1

= range


1 0

1 0

0 1


︸ ︷︷ ︸

U1

, null


b1 b2 b2

g1 0 0

g1 0 0

g2 g3 g3

 = null


1 0 0

0 1
2

1
2

0 1
2

1
2


︸ ︷︷ ︸

W2

= null

[
1 0 0

0 1 1

]
︸ ︷︷ ︸

V T
1

.

The set W2SW1 is given by

W2SW1 =



k1 k1 0

k2 k2 k3

k2 k2 k3


∣∣∣∣∣∣∣∣ ki ∈ R

 ,

and notice that

(W2KW1)P22(W2KW1) =


v1 v1 0

v2 v2 v3

v2 v2 v3

 ,∈ W2SW1

where v1 = 1
2
g1k

2
1, v2 = 1

4
(g1k1k2 + g2k1k3 + g3k2k3), and v3 = 1

2
g3k

2
3. Therefore,

W2SW1 is QI with respect to G, and so S is internally quadratically invariant with

respect to P .

Using the model reduction ideas of Section 7.4, we can establish the IQI property

by computing the reduced system (P̃ , S̃), and we find that:

P̃ =


a b1 b2

c1 g1 0

c2 g2 g3

 , S̃ =

{[
k1 0

k2 k3

] ∣∣∣∣∣ ki ∈ R

}
.
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According to Theorem 25, the reduced system (P̃ , S̃) should be QI. This is clear, as

both P̃22 and S̃ are lower-triangular.

Applying Theorem 24, we have that P12h(S)P21 is an affine set, and so we may

use convex programming to solve an associated control synthesis problem. Note that

h(S) is not affine in this case, because S being QI with respect to P22 is both necessary

and sufficient for h(S) to be affine.

7.6.2 Networked System with Delays

Suppose we have two discrete-time systems G1 and G2, controlled by K1 and K2

respectively. Controller K1 receives a measurement from G1, and a one-timestep-

delayed measurement from G2. Similarly, K2 receives a measurement from G2, and

a one-timestep-delayed measurement from G1. Further suppose that G1 and G2 are

coupled, so that G1 has an additional input that depends on the state of G2 and

vice-versa. The coupling has a delay of one timestep, as shown in Figure 7.2.

G1 G2

K1 K2

z−1

z−1

z−1

z−1

w1

r1

r2

w2

u1 y1 u2y2

Figure 7.2: Two coupled systems with controllers that receive delayed measurements



72 CHAPTER 7. INTERNAL QUADRATIC INVARIANCE

Let G1 be the stable second-order plant with discrete-time state-space equations:

x1(t+ 1) =

[
0.9 0.3

−0.6 0.8

]
x1(t) +

[
0

1

]
u1(t) +

[
0

1

]
v2(t− 1)

r1(t) =

[
1 0

0 0

]
x1(t) +

[
0

µ

]
u1(t)[

y1(t)

v1(t)

]
=

[
1 0

0.1 0.2

]
x1(t) +

[
1

0

]
w1(t),

where ri are the regulated outputs we wish to keep small, ui are the inputs provided

by the controllers, and vi is the coupling between the two systems. The equations are

the same for G2, except the subscripts 1 and 2 are interchanged. Taking z-transforms

and eliminating the state x, we obtain the plant[
r

y

]
=

[
P11 P12

P21 P22

][
w

u

]
,

where the various transfer functions are:

P11 = 0, P21 = I, P12 =

[
P22

µI

]
,

P22 =
6z

∆

[
2z(10z2 − 17z + 9) 4z − 3

4z − 3 2z(10z2 − 17z + 9)

]
,

and ∆ = (20z3− 34z2 + 14z+ 3)(20z3− 34z2 + 22z− 3). The controller has a special

structure, because of the delays associated with the measurements:

S =

{[
K11 z−1K12

z−1K21 K22

] ∣∣∣∣∣ Kij ∈ Rp

}
.

It is straightforward to verify that KP22K ∈ S for all K ∈ S. So we conclude that

(P, S) is QI. A more general version of this problem is analyzed in [50].

Note that there are multiple ways of generating a pair (P, S) that represents the
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G1 G2

K1 K2

z−1

z−1

z−1

z−1

w1

r1

r2

w2

u1 y1 u2y2

Figure 7.3: Alternate diagram for the system of Figure 7.2

system in Figure 7.2. For example, we could absorb the measurement delays into P ,

as shown in Figure 7.3, so that P̂11 = P11, P̂12 = P12,

P̂21 =


1 0

z−1 0

0 1

0 z−1

 , P̂22 =
6z

∆


2z(10z2 − 17z + 9) 4z − 3

2(10z2 − 17z + 9) (4z − 3)/z

4z − 3 2z(10z2 − 17z + 9)

(4z − 3)/z 2(10z2 − 17z + 9)

 .

The new information constraint is sparse:

Ŝ =

{[
K1 0 0 K2

0 K3 K4 0

] ∣∣∣∣∣ Ki ∈ Rp

}
.

It is straightforward to verify that Ŝ is not QI with respect to P̂22. However, this

problem is IQI. We can transform (P̂ , Ŝ) to (P, S) by first computing the skinny and

full-normal-rank matrices U1 and V1.

Had we used this representation for our problem, we would still be able to trans-

form it into a QI representation. Since
[
P̂21 P̂22

]
has a normal rank of 2 (not
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full-normal-rank), our system is reducible. Indeed,

[
P̂21 P̂22

]
=


1 0

z−1 0

0 1

0 z−1


︸ ︷︷ ︸

U1

[
P21 P22

]
, and V1 = I.

We can also verify that S = ŜU1. Therefore, the reduction procedure of Section 7.4

transforms (P̂ , Ŝ) to (P, S).



Chapter 8

Future Directions

In this chapter, we discuss three potential directions for future research. Each idea

presented here is inspired by a result from Chapters 5–7.

8.1 More General Reduction

In Section 7.4, we show that to test for QI, it is sufficient to test the system represen-

tation with the fewest inputs and outputs. We also show how to transform a system

into this minimal representation by suitably choosing U1 and V1. However, we only

describe one way of performing reduction; by using the transformation depicted in

Figure 7.1. Other ways of finding a representation with a reduced number of inputs

and outputs exist, but it is not always advantageous to find such reductions. An

avenue for future research would be to investigate the link between model reduction

and convexity.

In this section, we will show an example that illustrates that reduction is not

always beneficial from the viewpoint of quadratic invariance. The example is inspired

75
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by the well-known Kalman decomposition for state-space systems. Namely, if a state-

space system is put into Kalman form, it can be reduced:

A11 0 A13 0 B1

A21 A22 A23 A24 B2

0 0 A33 0 0

0 0 A43 A44 0

C1 0 C3 0 D


=

[
A11 B1

C1 D

]
= D + C1(sI − A11)

−1B1.

The state-space notation is actually a special case of an LFT. In Figure 8.1, we show a

block diagram that represents a general state-space system. It is identical in structure

to the block diagram used for general feedback loops, as shown in Figure 5.1.

D C
B A

s−1I

Figure 8.1: Block-diagram representing a state-space system

The reduction afforded by the Kalman decomposition can be generalized to the

multidimensional case if we use a diagonal controller. In other words,

P =



d c1 0 c3 0

b1 a11 0 a13 0

b2 a21 a22 a23 a24

0 0 0 a33 0

0 0 0 a43 a44


, K =


k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4

 , (8.1)

has the same closed-loop map as:

P =

[
d c1

b1 a11

]
, K =

[
k1

]
.
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We saw in Section 7.4 that it is always in our best interest to reduce the number of

inputs and outputs. However, that observation only holds for reductions described

by Figure 7.1. It does not hold with Kalman-type reductions. Consider (8.1), for

example. It is neither QI nor IQI, but we know that the second, third, and fourth

inputs and outputs can be eliminated without changing the closed-loop map.

If we remove the second and third inputs and outputs, we obtain

P =


d c1 0

b1 a11 0

0 0 a44

 , K =

[
k1 0

0 k4

]
, (8.2)

which is quadratically invariant. If we remove the third and fourth instead,

P =


d c1 0

b1 a11 0

b2 a21 a22

 , K =

[
k1 0

0 k2

]
, (8.3)

which is not quadratically invariant. Even though (8.2) and (8.3) have the same

number of inputs and outputs, only one of the two is QI. So, it is unclear how convexity

or quadratic invariance fits in when we consider more general types of reduction.

While the reduction above was clear thanks to the special forms of the matrices,

finding a reduction in the general case is much more difficult; it amounts to solving a

pair of coupled linear matrix inequalities subject to a rank constraint [33].

8.2 More General Convex Sets

We saw in Corollary 7 that QI is necessary and sufficient for the convexity of h(S).

However, there is no known converse result for the convexity of the set of achievable

closed-loop maps P11 + P12h(S)P21. In other words, we do not have a complete

characterization of when the set of achievable closed loop maps is convex.

In both the QI and IQI cases, this set turns out to be affine. However, it is possible

to have a convex set of achievable closed-loop maps that is not affine. For example,
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consider the following plant partitioned into its four blocks:

P =



0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 2 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 2 0 −1 0 −1

0 2 −1 0 0 0 0 0 0

0 0 0 0 2 0 −1 0 −1



,

and define the information constraint set S to be the following diagonal set:

S =





t
t
t
t
s

s
s

s



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s, t ∈ R


.

One can verify that (P, S) is neither QI nor IQI. However, if we compute the set of

achievable closed-loop maps, we find:

f(P, S) =
{
P11 + P12K(I − P22K)−1P21

∣∣ K ∈ S}
=


 2 t

(s2+1) (t2+1)

t2−1
(s2+1) (t2+1)

 ∣∣∣∣∣∣ s, t ∈ R

 .

The closure of f(P, S) is the unit disk in R2. That is,

clos f(P, S) =
{
x ∈ R2

∣∣ x21 + x22 ≤ 1
}
.
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This set is clearly convex, so we have a guarantee that the solution to the original

problem can be reduced to a convex optimization problem. We can solve for x1 and

x2 first, and then change coordinates to find the corresponding s and t.

So while QI and IQI provide nice sufficient conditions under which the set of

achievable closed-loop maps is affine, it can also happen that the set of achievable

closed-loop maps is a more general convex set. Some research has been done in

addressing the more general case. For example, Shin et. al. [52] show how to compute

the set of achievable closed-loop maps using elimination theory. The solution is

expressed as the projection of a semialgebraic set.

While this is the only general characterization currently known for the set of

achievable closed-loop maps, there are still some drawbacks. First, computing the

solutions involves finding a Groebner basis. There are systematic algorithms for

doing so which are guaranteed to converge after a finite number of steps, but this

number may be very large. Second, once we have found a representation for the

set of achievable closed-loop maps, determining convexity remains an open question.

Unless the equations happen to be linear or some other simple form such as the unit

disc in the example above, there is no known efficient way to verify convexity.

8.3 Stabilization

Suppose that in addition to solving (7.7), we would like K to be a stabilizing con-

troller. That is, we would like the closed-loop interconnection to be internally stable.

In the QI case, the stabilizing controllers were parametrized when P is stable [49].

More recently, a structured coprime factorization was found that yields a parametriza-

tion of stabilizing controllers even when P is unstable [51]. In both cases, the best

stabilizing K is found by solving a related optimization problem where the variable

to be optimized is a Youla-type parameter Q which is constrained to be stable. Un-

fortunately, there is no simple answer to the stabilization question for IQI problems.

We will now demonstrate this fact with a counterexample.

Define C to be the set of stable matrices. If P ∈ C, then K is stabilizing if and
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only if h(K) ∈ C. Therefore, the set of achievable stabilized closed-loop maps is

f(S) = P11 − P12 (h(S) ∩ C)P21.

If S is QI with respect to P22, then h(S) = S and the set becomes

fQI(S) = P11 − P12 (S ∩ C)P21.

This set is affine, and thus amenable to a convex optimization approach. Unfor-

tunately, we cannot make the same simplification in the IQI case. Even though

P12h(S)P21 = P12SP21,

fIQI(S) = P11 − P12 (h(S) ∩ C)P21

6= P11 − P12 (S ∩ C)P21.

Indeed, it turns out that P12 (h(S) ∩ C)P21 may not even be an Rp-module. To see

why, consider the system defined by the matrices

P12 =

[
1 0 0

0 1 1

]
, P21 =


1 0

1 0

0 1

 , P22 =


1 0 0

1 0 0

1 1 1

 ,
and define the set of admissible controllers

S =



k1 0 0

0 k2 0

0 0 k3


∣∣∣∣∣∣∣∣ ki ∈ Rp

 .

Note that S is IQI with respect to P , because if we define

W1 =


1
2

1
2

0
1
2

1
2

0

0 0 1

 and W2 =


1 0 0

0 1
2

1
2

0 1
2

1
2


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the three following properties hold:

i) W 2
i = Wi, so Wi are projectors,

ii)

[
I 0

0 W1

][
P11 P12

P21 P22

][
I 0

0 W2

]
=

[
P11 P12

P21 P22

]
,

iii) W2SW1 is QI with respect to P22.

Therefore, we have from Theorem 24 that

P12h(S)P21 = P12SP21.

Since P22 is stable, a stabilizing K corresponds to a stable Q. If compute Q for

this particular problem, we find:

Q = −


k1 0 0

0 k2 0

0 0 k3





1 0 0

0 1 0

0 0 1

−


1 0 0

1 0 0

1 1 1



k1 0 0

0 k2 0

0 0 k3



−1

= −


k1(1− k1)−1 0 0

k1k2(1− k1)−1 k2 0

(k2 + 1)k1k3(1− k1)−1(1− k3)−1 k2k3(1− k3)−1 k3(1− k3)−1



= −


q1 0 0

q1q2 q2 0

q1q3(q2 + 1) q2q3 q3

 ,
where we have defined q1 = k1(1 − k1)−1, q2 = k2, and q3 = k3(1 − k3)−1. Note that
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every element of this matrix is stable if and only if the qi are stable. Therefore,

{−P12h(K)P21 | K stabilizing}
= {−P12QP21 | Q ∈ C}

=


[

1 0 0

0 1 1

]
q1 0 0

q1q2 q2 0

q1q3(q2 + 1) q2q3 q3




1 0

1 0

0 1


∣∣∣∣∣∣∣∣ qi ∈ C


=

{[
q1 0

q1q3 + q2(1 + q1)(1 + q3) q3

] ∣∣∣∣∣ qi ∈ C
}
.

Note that the matrix X =

[
−2
s+1

0

0 −2
s+1

]
does not belong to this set. Indeed, it would

constrain q1 = q3 = −2
s+1

, and would force q2 = −q1q3
(1+q1)(1+q3)

= −4
(s−1)2 , which is not

stable. However, it is clear that both X1 =

[
−2
s+1

0

0 0

]
and X2 =

[
0 0

0 −2
s+1

]
belong

to the set (q1 = −2
s+1

, q2 = q3 = 0) and (q1 = q2 = 0, q3 = −2
s+1

), respectively. So we

conclude that the set P12(h(S) ∩ C)P21, and therefore the set of achievable stabilized

closed-loop maps, does not form an Rp-module.

Now suppose that P11 = −X =

[
2
s+1

0

0 2
s+1

]
. If we naively attempt to solve the

modified problem (7.9), we have:

minimize

∥∥∥∥∥∥∥∥
2

s+ 1

[
1 0

0 1

]
+

[
1 0 0

0 1 1

]
q1 0 0

0 q2 0

0 0 q3




1 0

1 0

0 1


∥∥∥∥∥∥∥∥

subject to qi ∈ C.

(8.4)
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This simplifies to:

minimize

∥∥∥∥∥ 2

s+ 1

[
1 0

0 1

]
+

[
q1 0

q2 q3

]∥∥∥∥∥
subject to q̂i ∈ C.

(8.5)

We can achieve a norm of zero, by setting q1 = q3 = −2
s+1

and q2 = 0. This solution is

unique, and clearly optimal. However, we already showed that X /∈ P12(h(S)∩C)P21.

So achieving a norm of zero in (7.7) is impossible, even though we did it in (7.9).

The problem is that in modifying (7.9) by adding the stability constraint to Q, we

implicitly assumed that because we had P12h(S)P21 = P12SP21, we would also have

P12 (h(S) ∩ C)P21 = P12 (S ∩ C)P21,

which is false. In general, the equals sign should be replaced by ⊆. Thus, if we are

seeking a stabilizing solution, the method of Theorem 26 can modified and used to

find a Kopt, but in general it will only be a lower bound on the optimal cost. There

is no guarantee that the Kopt obtained will be feasible.



Chapter 9

Conclusions

In this work, we investigated two open research questions. In Chapters 2–4, we de-

veloped an efficient and scalable algorithm to perform wavefront reconstruction on

adaptive optics hardware. Using numerical simulations, we found that our algorithm

performed comparably to other proposed methods, but with a significant computa-

tional speedup. Finally, we tested our method at the 3.1 m main telescope at Palomar

Observatory. We found that our algorithm produced indistinguishable images from

those found using the conventional optimal reconstructor, but at a fraction of the

cost. The computational speedup will be even greater for future large adaptive op-

tics systems, since our algorithm’s computational complexity is O(n) rather than the

conventional O(n2).

In Chapters 5–7, we characterized a new class of tractable decentralized problems,

which we called internally quadratically invariant. We prove that such problems have

a convex set of achievable closed-loop maps, making them amenable to a convex

optimization approach. This is the largest class of tractable decentralized control

problems known to date, and represents a significant step toward a complete charac-

terization of convex decentralized control problems.

Taking a step back, both parts of this thesis fit into the broad category of complex

systems. However, the nature of each part is very different. In adaptive optics, the

problem is solvable, but computationally intensive. Our approach was to find an

approximate solution method that was fast and scalable. We found that with a very

84
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slight approximation that went unnoticed on a real telescope, we achieved a very large

computational speedup.

In decentralized control, some problems are known to be hopelessly complicated.

The limitation is not with our computers, but rather in the nature of the problem.

Rather than finding ways to cut corners and save on computational effort, our goal

became to discover which types of decentralized problems have any hope of being

solved at all. We found a simple algebraic condition that ensures the convexity of

the set of achievable closed loop maps, thus paving the way for efficient numerical

approaches.

While this thesis provides significant contributions in two areas related to complex

systems, much work remains to be done. Future large-scale systems will require

further innovation on both fronts: designing network architectures that are provably

tractable, and ensuring that the numerical methods used therein are efficient and

scalable.
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