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Abstract— We consider iterative gradient-based opti-
mization algorithms applied to functions that are smooth
and strongly convex. The fastest globally convergent algo-
rithm for this class of functions is the Triple Momentum
(TM) method. We show that if the objective function is also
twice continuously differentiable, a new, faster algorithm
emerges, which we call C2-Momentum (C2M). We prove
that C2M is globally convergent and that its worst-case
convergence rate is strictly faster than that of TM, with no
additional computational cost. We validate our theoretical
findings with numerical examples, demonstrating that C2M
outperforms TM when the objective function is twice con-
tinuously differentiable.

Index Terms— Optimization algorithms, robust control

I. INTRODUCTION

WE CONSIDER the well-studied optimization problem

minimize
x∈Rd

f(x) (1)

where f : Rd → R is continuously differentiable. A popular
approach to solving (1), particularly when the dimension d
is large, is to use iterative gradient-based methods, such as
Gradient Descent (GD) and its accelerated variants.

A central question in the study of iterative methods is that
of worst-case convergence rate over a class of functions F .
In this letter, we consider the root-convergence factor (also
known as geometric convergence rate), denoted ρ ∈ (0, 1), a
notion we make precise in Section II. Associated with the
root-convergence factor are two important concepts:

a) Lower bounds: ρ is a lower bound for F if for any
algorithm, there exists f ∈ F and an algorithm initialization
such that the algorithm converges no faster than ρ.

b) Upper bounds: ρ is an upper bound for F if there
exists an algorithm such that for all f ∈ F and algorithm
initializations, the algorithm converges at least as fast as ρ.

If F has matching lower and upper bounds, this ρ and the
corresponding algorithm that achieves it are said to be minimax
optimal for F .
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Generally, adding more structure to a function class, such
as convexity or Lipschitz properties, makes the minimax rate
faster because iterative algorithms can exploit the additional
structure to converge more rapidly. We now provide a brief
survey of different function classes and their minimax rates.
The relationship between these classes is illustrated in the
Venn diagram of Fig. 1.

C2 Fm,L ∩ C2 Qm,L S2
m,L S1

m,L Fm,L

Fig. 1. Venn diagram of different function classes. Blue region: strongly
convex functions. Red region: twice continuously differentiable functions.
This letter focuses on the shaded intersection of these sets, S2

m,L.

The class Fm,L consists of continuously differentiable func-
tions with sector-bounded gradients. Specifically, there exists
x⋆ ∈ Rd (the optimal point) and constants 0 < m ≤ L such
that

(
L(x − x⋆) − ∇f(x)

)T(∇f(x) − m(x − x⋆)
)
≥ 0 for

all x ∈ Rd. Functions in this class may be nonconvex but
nevertheless have a unique local (and global) minimizer. The
minimax rate for Fm,L is ρ = κ−1

κ+1 where κ := L
m , and is

achieved by GD with stepsize α = 2
L+m .

The class S1
m,L consists of functions that have Lipschitz

gradient with Lipschitz constant L and are strongly convex
with parameter m. The superscript “1” indicates that f ∈ C1,
which follows from Lipschitz gradients. One can show that
S1
m,L ⊂ Fm,L. The minimax rate for S1

m,L is ρ = 1 − 1√
κ

,
and was recently proved in [1] using an exact characterization
of S1

m,L via interpolation conditions and the Performance
Estimation paradigm [2]. The same lower bound was obtained
in a parallel line of work by viewing algorithms as discrete-
time Lur’e systems and applying integral quadratic constraints
(IQCs) or dissipativity theory [3]–[5]. Specifically, the set
S1
m,L was over-approximated using Zames–Falb IQCs [6], [7],

leading to an upper bound that turned out to be exact. The
minimax rate for S1

m,L is achieved by the Triple Momentum
(TM) Method [8] and the Information Theoretic Exact Method
(ITEM) [9].

The class Qm,L ⊂ S1
m,L consists of quadratic functions of

the form f(x) = xTQx + pTx + r, with mId ⪯ Q ⪯ LId,
and we have Qm,L ⊂ S1

m,L. The minimax rate for Qm,L is



ρ =
√
κ−1√
κ+1

. The lower bound was proved by Nemirovsky [10]
and Nesterov [11, §2.1.4]. There are several minimax opti-
mal methods for Qm,L, the simplest of which is Polyak’s
Heavy Ball (HB) method [12, §3.2.1]. Polyak used Lyapunov’s
indirect method to show that HB converges locally for any
f ∈ S1

m,L provided that f is twice continuously differentiable
(f ∈ C2) in a neighborhood of the optimal point. In other
words, HB converges on S1

m,L when initialized sufficiently
close to the optimal point and enjoys the same fast rate as for
Qm,L! If incorrectly initialized, HB need not converge at all
on S1

m,L [3], [8].
The aforementioned minimax optimal algorithms are de-

scribed in Section II-A and summarized in Table I.
Polyak’s observation raises an interesting possibility, which

forms the starting point for the present work. If we consider
the function class S2

m,L := S1
m,L ∩ C2, then by Lyapunov’s

indirect method, any globally convergent method will converge
at its local rate, which may be faster than the minimax rate of
S1
m,L. This function class satisfies Qm,L ⊂ S2

m,L ⊂ S1
m,L and

may be characterized succinctly as functions whose Hessians
satisfy mId ⪯ ∇2f(x) ⪯ LId. Functions of interest in this
category include regularized logistic loss, exponential family
negative log-likelihoods with bounded natural parameters, and
Moreau envelope smoothing of any f ∈ S1

m,L.
Our main result is a new algorithm, C2-Momentum

(C2M). We show that C2M achieves an upper bound of
max

{√
κ−1√
κ+1

, ρC2M

}
on S2

m,L, where ρC2M < 1 −
√

2
κ . This

corresponds to an iteration complexity that is faster than the
minimax rate of S1

m,L by a factor of
√
2.

Notable related works are the recent papers [13], [14], which
use the same idea of optimizing the local convergence rate
while enforcing global convergence. Specifically, these works
develop re-tunings of HB and TM that converge globally on
Fm,L but have optimized local rates because they also assume
f ∈ C2 locally near the optimal point.

The rest of this letter is organized as follows. In Section II
we describe C2M, in Section III we prove convergence results,
in Section IV we present some numerical results, and in
Section V we discuss implications and future directions.

II. MAIN RESULT

In this section, we describe our proposed algorithm, state
its main convergence result, and use root locus arguments to
provide intuition behind the algorithm parameters.

A. Algorithm Form

We consider iterative first-order algorithms parameterized
by α, β, η ∈ R of the form

yk = xk + η (xk − xk−1) (2a)
uk = ∇f(yk) (2b)

xk+1 = xk + β (xk − xk−1)− αuk (2c)

for k ≥ 0 with initial conditions x0, x−1 ∈ Rd. We can
interpret such an algorithm as a linear time-invariant (LTI)
system G in feedback with the gradient ∇f , where the transfer

function1 from the gradient uk to the point yk at which the
gradient is evaluated is

G(z) = g(z)Id where g(z) = −α
(1 + η)z − η

(z − 1)(z − β)
. (3)

A minimal state-space realization of the reduced system g is[
A B

C 0

]
=

 1 + β −β −α

1 0 0

1 + η −η 0

 . (4)

Despite its simplicity, the form (2) can represent all algo-
rithms referenced in Section I when α, β, η are suitably chosen
(GD, HB, TM, ITEM, GHB, GAG). Table I shows parameters
for the minimax methods discussed in Section I.

TABLE I
MINIMAX-OPTIMAL METHODS FOR SEVERAL FUNCTION CLASSES.

Function
class

Minimax
method α β η

Minimax
rate ρ

Fm,L GD 1−ρ
m

0 0 κ−1
κ+1

S1
m,L TM [8] 1+ρ

L
ρ2

2−ρ
ρ2

(1+ρ)(2−ρ)
1− 1√

κ

Qm,L HB [12] (1−ρ)2

m
ρ2 0

√
κ−1√
κ+1

B. C2-Momentum

Definition 1 (C2M): Given parameters m,L, ρ ∈ R with
0 < m ≤ L, κ := L

m , and ρ ∈ (0, 1), the C2-Momentum
(C2M) algorithm is of the form (2) with parameters

α = (1−ρ)2

m , β = ρ
κ−1

(
1− κ (1−3ρ)

1+ρ

)
,

η = ρ
κ−1

(
1+ρ

(1−ρ)2 − κ
1+ρ

)
.

(5)

The C2M parameters depend on ρ, which we choose based
on the condition number κ of the objective function:ρ =

√
κ−1√
κ+1

if κ < 9 + 4
√
5

ρ ∈
(
ρC2M, 1−

√
2
κ

]
if κ ≥ 9 + 4

√
5

(6)

where ρC2M is the smallest positive root of the polynomial

p(κ, ρ) := 8κ(κ+ 1)ρ7 − (23κ2 + 18κ+ 7)ρ6

+ 2(5κ2 − 14κ− 7)ρ5 + (31κ2 + 50κ+ 15)ρ4

− 4(11κ2 − 4κ− 11)ρ3 + (23κ2 − 30κ+ 23)ρ2

− 2(κ− 1)(3κ+ 1)ρ+ (κ− 1)2. (7)

When κ < 9 + 4
√
5, the parameters of C2M reduce to those

of HB [12] in Table I. For κ ≥ 9 + 4
√
5, we in general want

to pick ρ as small as possible, but we will see that proving
global asymptotic stability requires a strict inequality, so in
practice we can choose ρ = ρC2M + ε for some small ε > 0.
The C2M stepsizes are defined in terms of the root ρC2M of
the polynomial p(κ, ρ) in (7). The following result (i) shows
that this quantity is well defined in that the polynomial does

1As a slight abuse of notation, we use the same symbol to refer to both an
LTI system and its transfer function.
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Fig. 2. Root locus of C2M. The locus has a double root at z = ρ at
gain m and a single root at z = −ρ at gain L.

have a positive root, and (ii) provides bounds on this root that
will be used in the analysis. The proof is in Appendix A.

Lemma 1: Suppose κ ≥ 9 + 4
√
5. The polynomial p(κ, ρ)

defined in (7) has exactly one real root ρC2M in the open
interval

(√
κ−1√
κ+1

, 1 −
√

2
κ

)
. Moreover, ρC2M is the smallest

positive root and p(κ, ρ) < 0 for all ρ ∈
(
ρC2M, 1−

√
2
κ

]
.

C. Main Result
To describe our main result, we first define the root-

convergence factor of an algorithm, which is a way to char-
acterize its rate of convergence; see [15, §9.2].

Definition 2: Let {xk} be a sequence that converges to a
point x⋆. Then, the root-convergence factor of {xk} is

ρ = lim sup
k→∞

∥xk − x⋆∥1/k .

Moreover, the worst-case root-convergence factor of an algo-
rithm (2) over a function class F is the supremum of the
root-convergence factors over all sequences produced by the
algorithm when applied to a function f ∈ F .

We now state our main convergence result for C2M over
the class S2

m,L. A full proof is included in Section III.
Theorem 1 (Upper bound for C2M): Consider the C2M

method defined in (5) with parameter ρ chosen according to
(6). An upper bound for the worst-case root-convergence factor
of C2M over the function class S2

m,L is ρ.

D. Root Locus Interpretation
Before rigorously analyzing the convergence of C2M, we

first provide intuition behind the C2M parameters (5) using a
root locus argument.

Consider the general algorithm (2) applied to a function
f ∈ Qm,L ⊂ S2

m,L with Hessian Q. By diagonalizing the
Hessian, the iterates separate into d decoupled systems, each
in (positive) feedback with an eigenvalue qi of Q. Since
the objective function is L-smooth, m-strongly convex, and
twice continuously differentiable, its Hessian has eigenvalues
in the interval [m,L]. Therefore, we can study worst-case local
convergence by analyzing the eigenvalues of A + qBC for
q ∈ [m,L]. These closed-loop eigenvalues are solutions of the
root locus 0 = 1 − q g(z) for q ∈ [m,L]. The parameters of
C2M are the solutions to the following conditions:

1) The root locus passes through z = −ρ when q = L.
2) The root locus has a double root at z = ρ when q = m.

The visual reasoning for these two conditions is illustrated in
Fig. 2, which shows the root locus of 1 − q g(z) as q varies.
As q → 0, the roots are the poles of g(z), which are β and 1.
These roots meet at z = ρ, circle around the zero at z =
η

1+η , then break in on the negative real axis, with one root
converging to the zero and the other going to −∞ along the
real axis. By enforcing the above two conditions, the root locus
remains entirely inside the ρ-circle for all q ∈ [m,L]. In terms
of the transfer function, these conditions are that

Lg(−ρ) = 1, m g(ρ) = 1,
dg(z)

dz

∣∣∣∣
z=ρ

= 0, (8)

where the last two equations are for the double root. Straight-
forward calculations show that the parameters (5) for C2M are
the unique solution to the equations (8).

III. CONVERGENCE ANALYSIS

We now prove the main convergence result for C2M from
Theorem 1. Our proof consists of two steps. First, we show
that the algorithm is globally asymptotically stable, meaning
that the iterates converge to the minimizer of f for all initial
conditions. Once we have global convergence, we then show
that the worst-case root-convergence factor is ρ by analyzing
the linearization of the algorithm about its equilibrium.

A. Global Stability via Frequency-Domain Analysis
It is convenient to shift the dynamics of the algorithm (2)

about its optimal point x⋆, which satisfies ∇f(x⋆) = 0. To
this effect, define x̃k := xk−x⋆, ỹk := yk−x⋆, ũk = uk, and
f̃(y) := f(y + x⋆). Then, we can rewrite (2) as:

ỹk = x̃k + η (x̃k − x̃k−1) (9a)

ũk = ∇f̃(ỹk) (9b)
x̃k+1 = x̃k + β (x̃k − x̃k−1)− α ũk (9c)

Convergence of the algorithm G applied to f is therefore
equivalent to convergence of G applied to f̃ . In other words,
we may assume without loss of generality that x⋆ = 0.

To verify global asymptotic stability, we use integral
quadratic constraints (IQCs) [16]. In discrete time, these are
defined as follows (see [17]), where ℓn2 denotes the space of
square-summable sequences on Rn.

Definition 3: Signals y ∈ ℓ
ny

2 and u ∈ ℓnu
2 with associated

z-transforms ŷ(z) and û(z) satisfy the IQC defined by a
measurable, bounded, and Hermitian matrix-valued function
Π : T → C(ny+nu)×(ny+nu) if∫

T

[
ŷ(z)
û(z)

]∗
Π(z)

[
ŷ(z)
û(z)

]
dz ≥ 0, (10)

where T := {z ∈ C | |z| = 1} is the unit circle in the complex
plane. A bounded operator ∆ : ℓ

ny

2 → ℓnu
2 satisfies the IQC

defined by Π if (10) holds for all y ∈ ℓ
ny

2 with u = ∆(y).
It is well known (see for example [17], [18]) that the

gradient of a smooth strongly convex function can be described
using IQCs.



Proposition 1: The operator ∆ : ℓd2 → ℓd2 defined by
(∆(y))k := ∇f̃(yk) for all k ≥ 0 and y ∈ ℓd2, where
f̃ ∈ S1

m,L and ∇f̃(0) = 0 satisfies the O’Shea–Zames–Falb
IQC Πm,L ⊗ Id, where

Πm,L :=

[
−mL(2− h− h∗) L(1− h∗) +m(1− h)

L(1− h) +m(1− h∗) −(2− h− h∗)

]
and h(z) is any transfer function with impulse response {hk}
satisfying ∥h∥1 =

∑∞
k=−∞ |hk| ≤ 1 and hk ≥ 0 for all k.

While ∆ satisfies the IQC Πm,L ⊗ Id, to analyze the
interconnection of the algorithm G with ∆ using the main
IQC theorem (see Proposition 2), we will first need to perform
a loop transformation (see, e.g., [19, §6.6]) so that the zero
operator is contained in the class of transformed uncertain-
ties. Doing so, the feedback interconnection of G and ∆ is
equivalent to the feedback interconnection of G̃ and ∆̃, where

G̃(z) = g̃(z)⊗ Id where g̃(z) =
L−m

2 g(z)

1− L+m
2 g(z)

and the transformed operator is given by

∆̃(x) = 2
L−m

(
∆(x)− L+m

2 x
)
.

Using properties of shifting and scaling the gradient of
smooth strongly convex functions [2, §2.4], ∆̃ satisfies the
IQC Π−1,1⊗ Id if and only if ∆ satisfies the IQC Πm,L⊗ Id.
We are now ready to apply the following main IQC result.

Proposition 2 (Discrete-time IQC result [17, Thm. 2]):
Fix ρ ∈ (0, 1). Suppose that G̃ is stable, ∆̃ is a bounded
causal operator, and

(i) the interconnection of G̃ and ∆̃ is well-posed,
(ii) for every τ ∈ [0, 1], τ∆̃ satisfies the IQC Π, and

(iii) the following frequency-domain inequality holds:[
G̃(z)
I

]∗
Π(z)

[
G̃(z)
I

]
< 0 for all z ∈ T.

Then the feedback interconnection of G̃ and ∆̃ is stable.
Applying Proposition 2 therefore yields the following.
Proposition 3: Algorithm (2) is globally asymptotically sta-

ble for all f ∈ S1
m,L if

(
1 − L+m

2 g(z)
)−1

is stable and the
following frequency-domain inequality (FDI) holds:[

g(z)
1

]∗
Πm,L(z)

[
g(z)
1

]
< 0 for all z ∈ T, (11)

where h(z) satisfies ∥h∥1 ≤ 1 and hk ≥ 0 for all k ∈ Z.
Proof: The stability condition is equivalent to stability

of G̃. It is straightforward to verify that the interconnection
of G̃ and ∆̃ is well-posed and that τ∆̃ satisfies the IQC Π =
Π−1,1⊗Id for all τ ∈ [0, 1]. Therefore, the first two conditions
in Proposition 2 hold for the transformed system G̃ and the
IQC Π. It remains to show that the FDI in (iii) is equivalent
to that in (11). To that end, we first write the numerator and
denominator of g̃ as[

L−m
2 g

1− L+m
2 g

]
=

[
L−m

2 0
−L+m

2 1

] [
g
1

]
= M

[
g
1

]
.

Using this relationship along with MTΠ−1,1M = Πm,L, the
FDI in (iii) of Proposition 2 is[

g̃
1

]∗
Π−1,1

[
g̃
1

]
=

1

|1− L+m
2 g|2

[
g
1

]∗
MTΠ−1,1M

[
g
1

]
.

Therefore, the FDI in (iii) is equivalent to that in (11). From
Proposition 2, the interconnection of G̃ and ∆̃ is stable,
which via loop shifting implies the interconnection of G and
∆ is stable. Finally, (input-output) stability means that all
signals have bounded norms. Therefore, ∥x̃∥ < ∞ =⇒
limk→∞ x̃k = 0 =⇒ limk→∞ xk = x⋆.

We use Proposition 3 with h(z) = z−1 to show that C2M
is convergent by directly verifying the FDI (11). First, the
condition that

(
1 − L+m

2 g(z)
)−1

is bounded follows from
the root locus argument in Section II-D; see the following
Section III-B for a more rigorous argument. Letting z =
x + i

√
1− x2 for x ∈ [−1, 1] and substituting the C2M

parameters, it is straightforward to verify that the FDI is
satisfied when ρ =

√
κ−1√
κ+1

and κ < 9 + 4
√
5. In the other

case with κ > 9 + 4
√
5, the FDI reduces to the inequality

0 > −4ρ
(
κ(1− ρ)2 − (1 + ρ)

)
x2

− 2(1− ρ)
(
κ(1− ρ)2(1 + 2ρ)− (1 + ρ)2

)
x

− (1 + ρ)
(
κ(1− ρ)2(1− 4ρ+ ρ2) + 6ρ− 2ρ3

)
. (12)

The right-hand side of (12) is a quadratic in x. To show that
this inequality holds, we will use the following.

Lemma 2: Suppose ρ ∈ [0, 1] and κ > 1. Then,

ρ >

√
κ− 1√
κ+ 1

⇐⇒ κ(1− ρ)2 < (1 + ρ)2,

ρ < 1−
√

2

κ
⇐⇒ κ(1− ρ)2 > 2.

Since ρ < 1−
√

2
κ by assumption, it follows from Lemma 2

that κ(1− ρ)2 > 2 > 1+ ρ. Therefore, the leading coefficient
of the quadratic is negative. Maximizing the right-hand side
of (12), this inequality holds if

p(κ, ρ)

4ρ(κ(1− ρ)2 − (1 + ρ))
< 0,

where p(κ, ρ) is the polynomial in (7). The denominator is
positive from the prior argument. Moreover, p(κ, ρ) is negative
for any ρ ∈

(
ρC2M, 1 −

√
2
κ

]
by Lemma 1, so the FDI is

satisfied. Therefore, C2M is globally asymptotically stable for
any ρ satisfying (6).

B. Local Convergence

While the root locus interpretation provides intuition behind
the local convergence of C2M, we now use Lyapunov’s
indirect method along with the Jury criterion to systematically
prove local convergence; see [20] for similar analyses in
other settings. We begin by characterizing the worst-case root
convergence factor in terms of the system matrices.

Lemma 3: The worst-case root-convergence factor of the
algorithm (2) over the function class S2

m,L is the maximum
spectral radius of A+ qBC over q ∈ [m,L].



Proof: From the linear convergence theorem [15, Thm.
10.1.4], the root-convergence factor of the algorithm (2) is the
spectral radius of its linearization evaluated at the equilibrium.
In particular, let {xk} denote the sequence produced by
applying algorithm (2) to a function f ∈ S2

m,L for some initial
conditions x0, x−1 ∈ Rd. Let Q denote the Hessian of f
evaluated at the minimizer of f . Then the root-convergence
factor of the sequence {xk} is the spectral radius of the lin-
earization A⊗Id+(BC)⊗Q, where ⊗ denotes the Kronecker
product. Since Q is real and symmetric, it is diagonalizable.
Applying this diagonalization to the linearized system yields
A ⊗ Id + (BC) ⊗ diag(q1, . . . , qd), where q1, . . . , qd are the
eigenvalues of Q. Therefore, the worst-case root-convergence
factor over the function class S2

m,L is the maximum spectral
radius of A+ qBC over q ∈ [m,L].

Based on Lemma 3, we can characterize the worst-case root-
convergence factor using the eigenvalues of A+qBC. We next
analyze these eigenvalues using the Jury criterion. Recall that
a polynomial z2+a1 z+a0 with real coefficients has roots in
the closed unit disk if and only if [21, §4.5]2

1 + a1 + a0 ≥ 0, 1− a1 + a0 ≥ 0, |a0| ≤ 1. (13)

The characteristic polynomial of the closed-loop system matrix
A + qBC is the quadratic χ(z) = z2 + (qα(1 + η) − (1 +
β))z + (β − qαη). Applying the Jury criterion (13) to the
scaled polynomial χ(ρz), the closed-loop eigenvalues are in
the closed ρ-disk if and only if

(1− ρ)(β − ρ) + α (ηρ− η + ρ)q ≥ 0,

(1 + ρ)(β + ρ)− α (ηρ+ η + ρ)q ≥ 0,

ρ2 + β − αηq ≥ 0, ρ2 − β + αηq ≥ 0,

for all q ∈ [m,L]. Since each inequality is linear in q, it
suffices to enforce the inequality at the endpoints q ∈ {m,L}.
Substituting the C2M parameters, this system of inequalities
reduces to √

κ− 1√
κ+ 1

≤ ρ ≤ κ− 1

κ+ 1
.

The lower bound on ρ is the minimax rate for Qm,L. Since
all parameters ρ in (6) satisfy these conditions, we have that
all eigenvalues of A+qBC are in the ρ-disk. Therefore, from
Lemma 3, the parameter ρ is the worst-case root-convergence
factor of C2M, which completes the proof of Theorem 1.

C. Iteration Complexity

It is common in optimization to characterize algorithm
convergence using iteration complexity [11, §1.1.2]. Iteration
complexity is an expression for how the worst-case number
of iterations N required to reach a specified error ε scales
as a function of problem parameters such as κ, expressed
asymptotically as ε → 0 and κ → ∞. If the convergence
rate is ρ as defined in Definition 2, then ∥xk − x⋆∥ ≤
c(k)ρk, where c(k) grows sub-exponentially in k. We seek

2The reference states the results for the roots to be contained in the
open unit disk, which is described by the corresponding strict inequalities.
Since the roots of a polynomial depend continuously on its coefficients, the
corresponding result for the closed unit disk holds with non-strict inequalities.

the smallest N such that c(N)ρN ≤ ε. Rearranging, we obtain
log c(N) +N log ρ ≤ log ε. Since c(N) is sub-exponential, it
is dominated by the linear term in N as ε → 0 (and therefore
N → ∞), so we neglect it. We are left with N ≥ −1

log ρ log
1
ε .

Next, we expand −1
log ρ as a function of κ → ∞, keeping only

the most significant term. For example, if ρ = 1− c√
κ

,

−1

log ρ
=

−1

log
(
1− c√

κ

) =

√
κ

c
− 1

2
− c

12
√
κ
− · · · ≈

√
κ

c
.

Based on the minimax rate of TM in Table I (c = 1), we
conclude that NTM ≳

√
κ log 1

ε . Similarly, for HB, we have√
κ−1√
κ+1

= 1− 2√
κ+1

≈ 1− 2√
κ

(c = 2), so NHB ≳
√
κ
2 log 1

ε .
For C2M, we do not have a nice expression for ρC2M, but

we can nevertheless find an asymptotic analytic expansion for
it about κ → ∞, which leads to the bounds

1−
√

2

κ
− 1 + 2

√
2

4κ
< ρC2M < 1−

√
2

κ
.

Therefore, c =
√
2 and NC2M ≳

√
κ√
2
log 1

ε . In other words,
C2M is faster than TM by a factor of

√
2.

In contrast, GD has iteration complexity NGD ≳ κ
2 log 1

ε . In
the optimization literature, methods with the

√
κ factor instead

of merely κ are called accelerated methods. We can visualize
iteration complexity by plotting −1

log ρ versus κ on a log-log
scale (we omit the log 1

ε factor); see Fig. 3. We also included
a plot for GD (see Table I).

We see in Fig. 3 that non-accelerated methods (GD, GAG)
have an asymptotic slope of 1 whereas accelerated methods
(C2M, TM) have an asymptotic slope of 1

2 .

Fig. 3. Iteration complexity of several iterative methods applied to
S2
m,L. The proposed C2M method outperforms TM [8], which is min-

imax optimal on S1
m,L, by exploiting a faster local convergence rate.

Similarly, GAG [14] outperforms GD, which is minimax optimal on Fm,L.

IV. NUMERICAL VALIDATION
We simulate our proposed algorithm C2M along with sev-

eral other first-order methods on a function chosen to showcase
worst-case behavior. We used the function [8, §IV]

f(x) = (L−m)

p∑
i=1

g(aTi x− bi) +
m

2
∥x∥2 ,

where g(w) is 1
2w

2e−r/w if w > 0 and zero if w ≤ 0. When
r > 0 and 0 < m ≤ L and

∥∥[a1 · · · ap
]∥∥ = 1, such



functions satisfy f ∈ S2
m,L. We chose the parameters L = 1,

m = 10−3, r = 10−3, p = 2, a1 = (1, 0), a2 = (0, 0.002),
and b1 = b2 = 100. All methods were initialized at x0 = 0.

In Fig. 4, we plot error as a function of iteration. The
function f elicits worst-case behavior from GD, HB, and
TM. In other words, GD and TM converge at their respective
minimax rates for Fm,L and S1

m,L. Since f /∈ Qm,L, HB
is only locally convergent. In our simulation, we see that
HB does not converge; however, if we were to initialize HB
sufficiently close to x⋆, then it would converge at least as fast
as the minimax rate for Qm,L. Our proposed C2M exploits
additional smoothness in the objective to converge globally
at a rate that is always faster than the minimax S1

m,L rate.
Likewise, GAG, which is globally convergent on Fm,L, is
slightly faster than GD, which is minimax-optimal on Fm,L.

Fig. 4. Simulation results for a function f ∈ S2
m,L (see Section IV).

Solid lines are simulation results for the specified method; black lines
are minimax rates for different function classes (see Table I); the dotted
purple line is our theoretical upper bound (worst-case) rate for C2M.

V. DISCUSSION
The proposed C2M algorithm is the first method, to the best

of the authors’ knowledge, that is designed specifically for the
function class S2

m,L. The minimax rate for this function class,
however, is not known, in contrast to the function classes S1

m,L

and Qm,L. Finding this minimax rate or even lower bounds
are interesting open problems.

The parameters of C2M are related to two other algorithms
from the literature. As we have already seen, C2M reduces to
HB when ρ =

√
κ−1√
κ+1

. Moreover, the general C2M parameters
are identical (after appropriate transformations) to those of
GAG [14, Cor. 1.1]. This makes sense, since the work [14]
also considers the family of algorithms (2) and is optimizing
for local convergence. The two cases differ, however, in the
choice of ρ, since GAG is optimized over the function class
Fm,L defined in Section I rather than S2

m,L.

APPENDIX

A. Proof of Lemma 1
We apply Sturm’s theorem [22, Thm. 2.62] to p(κ, ρ) as a

polynomial in ρ. Define the Sturm sequence

p0 = p, p1 =
dp
dρ

, pi+1 = −rem(pi−1, pi) for i ≥ 1,

where rem() denotes the remainder after polynomial division
(considered as polynomials in ρ), and the sequence terminates

when pi is constant, which occurs for i ≤ 7 since p is degree 7
in ρ. Evaluating the Sturm sequence at ρ = 0 and ρ = 1 yields
5 sign changes and 3 sign changes, respectively. Therefore,
there are two real roots in the interval (0, 1). Moreover, p is
positive when ρ =

√
κ−1√
κ+1

, negative when ρ = 1 −
√

2
κ , and

positive when ρ = 1. By the intermediate value theorem, we
conclude that there is exactly one real root in each interval(√

κ−1√
κ+1

, 1 −
√

2
κ

)
and

(
1 −

√
2
κ , 1

)
, and the value of p is

negative for all ρ ∈
(
ρC2M, 1−

√
2
κ

]
.
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