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Future extreme adaptive optics (ExAO) systems have been suggested with up to 105 sensors and actuators. We
analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a
total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new
variants of these. Simulations on a 128�128 square sensor/actuator geometry using Taylor frozen-flow dy-
namics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a
basis of the mean squared error and floating-point multiplications required. We also investigate the use of
warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estima-
tion or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every
algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration
per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the mini-
mum error if warm started. The best algorithm is therefore the one with the smallest computational cost per
iteration, not necessarily the one with the best quasi-static performance. © 2008 Optical Society of America
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. INTRODUCTION
daptive optics (AO) compensates for atmospheric turbu-

ence in real time. There are two steps in the control al-
orithm. In the estimation step, a sensor array gathers
oisy measurements and the phase aberration is recon-
tructed. In the control step, the deformable mirror (DM)
s adjusted to cancel out these offsets. Small AO systems
103 sensors) have been built and used with great success,
ut future systems will be much larger (104–105 sensors).
he estimation or reconstruction step is computationally
xpensive and typically scales poorly with the number of
ensors. The optimal reconstruction matrix is dense, and
hus it is expensive to store it and to perform a full
atrix–vector multiplication at every time step.
Since the original paper on AO reconstruction [1], there

as been much effort made to accelerate the estimation
ask. Sparse matrix factorization methods [2] have been
sed with a conjugate-gradient iterative scheme paired
ith either a multigrid (MG) [3,4] or a Fourier [5] precon-
itioner. This provides convergence only in a small num-
er of iterations. Other methods of acceleration include a
ourier-domain (FD) reconstruction [6], a blended FD/
reconditioned conjugate-gradient (FD-PCG) method [7],
nd a local control approach [8].
These methods are typically simulated in open loop us-

ng a quasistatic assumption: A single phase screen is
sed to generate a measurement, construct an estimate,
nd compute the error. In other words, an independent es-
imation problem is solved for every measurement. In this
1084-7529/08/051147-9/$15.00 © 2
aper we incorporate a one-step delay in all open-loop
imulations so that all errors are computed with respect
o the next phase screen, rather than the current one. The
losed-loop system is usually simulated using a simple in-
egral gain, which is what we adopt here.

In this paper, we compare the computational perfor-
ance of 15 iterative reconstructors by running numeri-

al simulations in both open loop and closed loop of a
arge single-conjugate AO system (SCAO). The sensor
ampling rate is chosen by examining the trade-off be-
ween sampling rate and minimum achievable estimation
rror.

We also examine the benefits of warm starting, where
he most recent estimate is stored and used to initialize
he subsequent iteration. The alternate approach is to
old start, where the iterative schemes are initialized at
ero. We show that although the iterative reconstructors
ay converge at different rates in open loop with a cold

tart, they all require a single iteration per time step in
losed loop. The best methods are the ones with the
heapest cost per iteration.

Similar solution techniques apply to the multiconju-
ate (MCAO) case, but the results are different. In
CAO, minimum-variance reconstructors (MVR) or some

ther type of regularization must be implemented to
chieve an acceptable performance. In SCAO, there is no
enefit to using MVR. A simple least-squares reconstruc-
or has a virtually identical performance.

Standard closed-loop techniques give rise to stability
008 Optical Society of America
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roblems in MCAO [9,10]. We tried three different closed-
oop architectures in SCAO and found them all to be
table for every method tested. We also show that the FD-
CG algorithm [5,11] performs well in the SCAO case.
It is worth noting that temporal atmospheric models do

xist. A popular model is the Taylor frozen-flow approxi-
ation, which assumes the atmosphere is composed of

tacked translating layers. State–space representations
f this model have been proposed, which have led to for-
ulations using the theory of optimal control [12–14].
owever, these methods require that the layer wind ve-

ocities be either estimated or known a priori.
Another possibility is to project the phase onto a differ-

nt basis, such as Zernike polynomials, and model each
ode separately [15,16]. While the spatiotemporal statis-

ics produced are correct, the associated cost of solving
iscrete algebraic Riccati equations and storing large
ense covariance matrices is very high. Recent work by
oyneer et al. [14] avoids this problem by using a modal
ecomposition to decouple the Riccati equation, thereby
reatly reducing the cost.

In Section 2, we describe the system model (geometry,
ensors, and noise). In Section 3, we discuss least-squares
nd minimum-variance reconstructions. In Section 4, we
iscuss iterative schemes used to accelerate reconstruc-
ion. Finally, in Section 5, we analyze computational per-
ormance through simulation using a Taylor frozen-flow
odel and a square 128�128 sensor/actuator array.

. SYSTEM MODEL
. Sensor and Actuator Geometry

n optical telescopes the aperture is typically annular, so
he DM and sensor array also share this shape. The algo-
ithms we will discuss use sparse matrix operations and
o not rely on a particular choice of geometry. Thus, for
implicity, we will assume a square sensor and actuator
rid arranged in a SCAO setup with a single centered
atural guide star. The actuators lie at the vertices of an
�N grid, and the sensors are aligned with the centers

f the faces (Fried geometry); see Fig. 1. The influence

a11 a12 a13 a1N

a21 a22 a23 a2N

a31 a32 a33 a3N

aN1 aN2 aN3 aNN

s11 s12

s21 s22

ig. 1. Sensor �sij� and actuator �aij� arrangement for a Fried
eometry. We measure a noisy gradient of the phase at sij, and
he goal is to estimate the phase at a .
ij
unction is the identity, and there is no fitting step in the
econstruction, only an estimation step.

. Measurement Equation
he most commonly used wavefront sensors measure ei-

her the local gradient or the local curvature in the inci-
ent wavefront. We will assume a Shack–Hartmann sen-
or array, which produces gradient measurements in both
ransverse directions. The measurements can be written
s a linear function of the phases at each of the four near-
st actuator locations plus Gaussian sensor noise [17].
or example, referring to Fig. 1,

y�s12� =
1

2���a13� − ��a12� + ��a23� − ��a22�

��a13� + ��a12� − ��a23� − ��a22�� + �v1

v2
� .

f we collect all the phases into a vector � arranged in a
olumn-major ordering, �k=��aij�, where k= i+ �j−1�N,
nd we do the same for y and v, we can write the following
inear equation relating the phase offsets to the measure-

ents:

y = G� + v,

here ��RN2
, y�R2�N−1�2, and v is a vector of zero-mean

ndependent identically distributed Gaussian random
ariables with cov v=�2I. Note that G is a sparse matrix
four nonzero entries per row). From now on, let n=N2 de-
ote the length of the vector �.
The sensor measurements y depend only on relative

hase measurements. To take advantage of this, we as-
ume each set of phases is translated such that the aver-
ge value is zero. In other words, define x= �I− 1

n11T��,
here 1 is the n�1 vector of ones. This is equivalent to

emoving the piston mode, further discussed in Section 3.
he same linear equations hold:

y = Gx + v. �1�

n the next section, we will discuss how to model the noise
ariance �2.

. Noise Model
hat follows is a summary of the Shack–Hartmann sen-

or noise model developed in [[17], Section 5.C]. The sen-
or noise v is Gaussian to a good approximation, but its
ariance �2 depends on a variety of factors, including the
uide star brightness and the noise in the CCD detectors:

�2 = �3�2Kg

8 �2nph + nbg + ND�e
2

nph
2 , �2�

here nph and nbg are the expected number of signal and
ackground photoelectrons, respectively, hitting a single
ensor per sampling interval; �e is the root-mean-square
RMS) read-out error in each of the ND CCD detector pix-
ls forming each sensor; and Kg is a correction factor that
ccounts for the small gaps between the sensors. Equa-
ion (2) has this particular form because the number of
hotons hitting a sensor is distributed as a Poisson pro-
ess. The number of photoelectrons is related to the
ample rate via
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nph =
��phA

b
, nbg =

��bgA

b
, �3�

here b is the sample rate in hertz, �ph and �bg are pho-
on fluxes in photons per square meters per second, A is
he portion of the area of the main mirror that projects
nto a single sensor subaperture (in square meters), and
is the product of the quantum efficiency of the CCD and

he optical efficiency of the various mirrors and filters.
ombining Eqs. (2) and (3) yields

�2 = �3�2Kg

8 �2����ph + �bg�A

b
+ ND�e

2�� b

��phA�
2

. �4�

his equation relates the sensor noise variance �2 to the
ample rate b and the photon arrival rates �ph and �bg,
hich are a function of the guide star brightness. Note

hat increasing the sampling rate makes the sensors
oisier, and using a brighter guide star makes the sensors
ore accurate.

. WAVEFRONT RECONSTRUCTION
. Least-Squares Reconstruction
he objective is to estimate the phase at each of the ac-
uator locations so that we may send this information to
he DM and cancel the aberration. Only the relative
hase is meaningful, so we can estimate x instead of �.
rom Eq. (1),

y = Gx + v.

ince the system is overdetermined (roughly twice as
any sensor measurements as actuators), one can mini-
ize the norm of the residual. This is known as least-

quares reconstruction. However, a regularization must
e performed because G is not full rank: The piston (con-
tant) and waffle (checkerboard) modes are in the null
pace of G and hence are unobservable. We construct
hase estimates with a zero waffle mode because the
affle mode is small in practice, and we also make the
iston mode zero because only relative phase offsets mat-
er. If we let V denote the n�2 matrix whose columns are
he normalized piston and waffle modes, the problem be-
omes finding x̂ in order to

minimize �y − Gx̂�2

subject to VTx̂ = 0.

he solution to this problem is

x̂ = �GTG + VVT�−1GTy.

e can compute x̂ by solving the linear system

�GTG + VVT�x̂ = GTy. �5�

. Minimum-Variance Reconstruction
n order to better estimate x, one must know something
bout its prior distribution. The first complete summary
f the theory of propagation through atmospheric turbu-
ence was by Tatarskii [18], based on the assumption of a
olmogorov power spectral density (PSD) for spatial
hase distribution ��k��k−11/3. The model is widely ac-
epted because its predictions agree well with experimen-
al evidence.

The phase � has infinite variance because the PSD is
nbounded at zero. However, the piston-removed phase x

s normally distributed with zero mean and finite covari-
nce C. The inverse of this covariance matrix can be ap-
roximated by a product of sparse matrices:

C−1 � LLT, �6�

here L is proportional to a discretization of the Laplac-
an operator. This procedure was originally applied to a
udgin geometry [2] but works just as well for a Fried ge-

metry [19], as long as we modify the discretized Laplac-
an accordingly. In both cases, the correct choice is that L
e proportional to GTG. The piston and waffle modes are
herefore still unobservable. We can estimate x by mini-
izing the conditional mean square error (MSE). We
ust find x̂ in order to

minimize E��x − x̂�2 	 y�

subject to VTx̂ = 0,

here x is a zero-mean random variable with covariance
atrix C. The solution to this problem is

x̂ = �GTG + �2C−1 + VVT�−1GTy.

his is known as minimum-variance reconstruction. We
an compute x̂ by using the approximation in Eq. (6) and
olving the linear system

�GTG + �2LLT + VVT�x̂ = GTy. �7�

his is very similar to the least-squares solution. Indeed,
he solutions are identical in the case of zero sensor noise.

Note that the original formulation of minimum-
ariance reconstruction [2] takes into account both the fit-
ing and estimation steps. Since we neglect the fitting
tep and all statistics are Gaussian, the minimum-
ariance estimate is the same as a maximum a posteriori
MAP) estimate [[5], p. 5282].

. ITERATIVE METHODS
. MG and MG-PCG Methods
hat follows is a brief review of MG and PCG methods.
quations (5) and (7) are of the form Ax̂=b, where Au can
e computed in O�n� floating-point multiplications for ar-
itrary u�Rn. This follows because

• G and L are sparse so GTGu and LLTu cost O�n�, and

• VVTu=V�VTu� costs O�n� because V�Rn�2.

Such systems can be solved efficiently by using MG
ethods, which use a smoother, cheap linear iterative
ethod that rapidly removes high-frequency content in

he error. The residual is projected onto a coarser grid us-
ng a restriction operator, and the smoother is applied
gain. The general idea is that low-frequency content in
he residual becomes high-frequency content when pro-
ected onto a coarser grid. This process continues, and the
arious coarse-level corrections are interpolated back
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nto the fine grid using a prolongation operator. The cor-
ections are then added to the original estimate to im-
rove it. When done repeatedly, this is known as a MG it-
rative method. If we alternate between a MG iteration
nd a conjugate-gradient iteration, this is known as a
G-PCG.
Both MG [19] and MG-PCG [3,4] methods provide O�n�

onvergence for the least-squares reconstructions and
VR. The important parameters are these:

1. The type of smoother used, typically a weighted-
acobi (J) or Gauss–Seidel (GS) iteration.
2. The number of smoothing iterations to run on each

evel before �	1� and after �	2� applying the coarse-level
orrection.

3. The choice of restriction and prolongation operator.
n this paper we use full weighting for restriction and bi-
inear interpolation for prolongation [20, Section 2.C].

4. The cycle pattern, describing how the various levels
re visited. In this paper, we use V-cycles (each level is
isited twice per iteration), unless otherwise indicated.

For a comprehensive look at MG methods, we refer the
eader to [20]. Once we have selected the specific MG
ethod, the general procedure is as follows:

1. Measurement arrives.
2. Run a predetermined fixed number of iterations of

he chosen method, which ensures the estimate has con-
erged.

3. Send the estimate to the controller, which passes the
ppropriate actuator signals to the DM.
4. Go to step 1.

We call this procedure a cold-start configuration be-
ause every time a new measurement arrives, the itera-
ive process is restarted with an initial guess of x̂0=0, the
rior mean of the distribution of x.

. Warm-Start Configuration
n the warm-start configuration, the most recent phase
stimate is used as a guess value for the first iteration
henever a new measurement arrives. This technique is

ommonly used in numerical linear algebra and has also
een used in the context of AO [11].
Atmospheric phase offset is strongly correlated in time,

o we can expect the most recent estimate to be a good
uess for the current phase. As we will see, iterative MG
econstruction schemes converge much faster when used
n a warm-start configuration.

. Computational Cost
e will evaluate various iterative schemes on the basis of

omputational cost. In this paper, we chose to count the
umber of floating-point multiplications. This cost in-
ludes smoother iterations, computation of residuals, re-
triction and prolongation operations required to pass cor-
ections up and down the hierarchy of levels, and
onjugate-gradient iterations if applicable. All costs were
omputed analytically to ensure a fair comparison.

In the case of Fourier-based methods, we associated a
ost of 1

2n log2�n� multiplications to perform a fast Fourier
ransform (FFT) on a vector of length n. This is consistent
ith the cost of a Radix-2 implementation (n is a power of
). It is worth noting that FFTs can be implemented very
fficiently in hardware, so floating-point operations per
econd may not be an accurate representation of true per-
ormance.

There are other possible choices, such as the number of
otal floating-point operations (multiplications and addi-
ions), or memory considerations.

. SIMULATION
n this section we present our simulation results. Using a
aylor frozen-flow temporal dynamics model, we simu-

ated the open-loop cold-start and warm-start cases, as
ell as the closed-loop case.

. Parameters
he photon flux from the guide star in the visible is

� = 0.9405 � 1010−0.4M, �8�

here M is the stellar magnitude and � is the photon flux
easured in photons per square meters per second. We

ssumed a 30 m�30 m square aperture and a 128�128
rray of sensors arranged using a Fried geometry. There
re therefore 1292 actuators.
We assumed Shack–Hartmann quad-cell �ND=4� sen-

ors with a RMS read error of �e=7 electrons. The gap
orrection factor was chosen to be Kg=1.2, which is typi-
al of this type of sensor [17]. We also chose a quantum
fficiency of 0.8 and an optical efficiency of 0.5, for a total
fficiency of �=0.4. For the background photons, we chose

value of 20 magnitudes/arc sec2, which translates to
bg�0.01nph in this case.
Phase screens with the proper spatiotemporal correla-

ions were generated using Arroyo [21,22], a C

 library
or the simulation of electromagnetic wave propagation
hrough turbulence. We chose seeing conditions consis-
ent with Ellerbroek’s Cerro Pachon layered atmospheric
odel [23] and assumed Kolmogorov statistics for each

ayer (Taylor frozen-flow hypothesis).
Using Arroyo, we generated a data set consisting of

000 independent runs for each of 25 logarithmically
paced sample rates between 10 and 104 Hz. Each run
onsists of 10 time-correlated phase screens. Each simu-
ation was generated from this data set, and all results
ere averaged over the 1000 independent runs.
Least-squares reconstructors and MVR were imple-
ented. For the minimum-variance case, we used
=�GTG, where �2=0.2 was calculated via Monte Carlo

imulation to minimize the piston-removed MSE.

. Open-Loop Cold-Start Results
egardless of the estimation method, there is a trade-off

or choosing the optimal sample rate, which depends on
he seeing conditions and guide star brightness [[17], p.
4].
The sensors take time-averaged measurements, the it-

rative scheme takes time to converge, and the control al-
orithm takes time in responding to the changes in the es-
imate. These delays result in estimation error, because
ven if the DM is ideal, it will assume the shape of the
easured wavefront, not the current wavefront. As we in-
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rease the sample rate of the sensors, this delay error is
educed. However, as seen in Subsection 2.C, increasing
he sample rate makes the sensors noisier, resulting in in-
reased estimation error. With this trade-off in mind, we
an select the sample rate that minimizes the minimum
chievable MSE.
For each of the M=1000 runs indexed by i, we took two

emporally correlated phase screens x1
�i� , x2

�i�. The first
creen is used to generate a noisy measurement and esti-
ate:

y1
�i� = Gx1

�i� + v1
�i�,

x̂1
�i� = A−1GTy1

�i�.

ote that the noise strength cov v1
�i�=�2I depends on the

ample rate as in Eq. (4). The coefficient matrix to be used
s either A=GTG+VVT (least squares), or A=GTG
�2LLT+VVT (minimum variance). The estimate is com-
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m

ared with the second screen to compute various normal-
zed MSE measures:

1. Lag error: 1
M
i=1

M �x1
�i� − x2

�i��2� 1
M
i=1

M �x2
�i��2

,

2. Noise error: 1
M
i=1

M �x̂1
�i� − x1

�i��2� 1
M
i=1

M �x2
�i��2

,

3. Total error: 1
M
i=1

M �x̂1
�i� − x2

�i��2� 1
M
i=1

M �x2
�i��2

.

Using the seeing conditions chosen in Subsection 5.A,
ogether with a guide star magnitude of 8, we plotted the
hree error measures (Fig. 2). The total error coincides
ith the lag error at low sample rates and with the noise
rror at high sample rates. The optimal sample rate is
bout 417 Hz for these conditions. As previously noted,
e are dealing with open-loop estimation. In a closed-loop

Table 1. List of Iterative Schemesa

umber Type Smoother Cycle Cost per Iteration

1 MG GS(1,0) V 3.406�105

2 MG GS(1,1) V 4.723�105

3 MG GS(2,2) V 7.358�105

4 MG J(1,0) V 3.406�105

5 MG J(1,1) V 4.723�105

6 MG J(2,2) V 7.358�105

7 MG GS(1,0) W 5.050�105

8 MG GS(1,1) W 7.003�105

9 MG-PCG SGS(1,1) V 6.377�105

10 MG-PCG SGS(2,2) V 9.012�105

11 MG-PCG J(1,1) V 6.377�105

12 MG-PCG J(2,2) V 9.012�105

13 MG-PCG J(1,1) W 8.657�105

14 MG-PCG SGS(1,1) W 8.657�105

15 FD-PCG — — 12.984�105

aThe cost per iteration is measured in floating-point multiplications. For all meth-
ds except FD-PCG, this cost is proportional to the number of actuators. SGS, sym-
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onfiguration, the plot would look similar but would have
different optimal frequency due to the additional errors

ncurred by the controller dynamics.
One way to quantify the noise level is to use the notion

f signal-to-noise ratio (SNR). For consistency with exist-
ng literature, we will use the quantity from [3,5,7,16,19]:

SNR = �E�Gx�2

E�v�2 �1/2

.

hoosing a brighter star magnitude M=5 and a fainter
tar magnitude M=10, we can see how SNR varies with
ample rate in Fig. 3. In the literature, SNR values rang-
ng from 1 to 100 are typically assumed, which is consis-
ent with the range obtained in this figure.

Using these three different star brightness values as a
ay of characterizing different noise levels, we obtained
ifferent trade-off curves and corresponding optimal
ample rates (Fig. 4).

The MVR outperforms least squares only when we are
oise dominated (either a faint guide star or an exces-
ively high sample rate). When using the optimal sample

Table 2. Cost Comparison (Iterating to
Convergence)a

Iterative
Scheme

Iteration
Cost

(Multiplications)

Iterations
to

Convergence

Total
Cost

(Multiplications)

FD-PCG 1.30�106 9 1.17�107

MG, J(1,0) 3.41�105 6 2.04�106

MG-PCG,
J(2,2)

9.01�105 2 1.80�106

MG, GS(2,2) 7.36�105 2 1.47�106

MG, GS(1,1) 4.72�105 3 1.42�106

MG, GS(1,0) 3.41�105 4 1.36�106

MG-PCG,
J(1,1)

6.38�105 2 1.27�106

G, GS(1,0),
W-cycle

5.05�105 2 1.01�106

aThe iterations to convergence were extracted from Fig. 5. The cheapest method
sing this metric is GS�1,0�, using a W-cycle.
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ig. 5. Convergence plots comparing simple MG, with conjugate
G methods use Gauss–Seidel (GS) or Jacobi (J) smoothers. Th
ost methods converge in a few iterations with comparable com
ate for a large SCAO reconstruction, there is no advan-
age to using minimum-variance reconstruction. This is
onsistent with the observation by Ellerbroek that con-
entional least-squares reconstruction is near optimal for
uture large AO systems [2].

Next we compared several existing iterative methods
n the basis of computational cost (as described in Sub-
ection 4.C). See Table 1 for a complete list. We used both
acobi (J) and Gauss–Seidel (GS) smoothers, with and
ithout PCG, and we varied the number of presmoothing
nd postsmoothing steps per iteration. When we used
CG, GS was replaced with a symmetric Gauss–Seidel

SGS) smoother to obtain a proper symmetric precondi-
ioner. We added some new methods that to our knowl-
dge have not been published specifically for AO: a
-cycle MG scheme (V-cycles were used for all other
ethods) and asymmetric MG schemes that perform only

ne smoothing step per V-cycle, such as GS(1,0). Also, the
ecently proposed FD-PCG method has been simulated
or MCAO systems [5,11]; here we demonstrate its perfor-

ance on an SCAO system.
See Fig. 5 for the results. The simulation parameters

re the same as those used in Fig. 2, running at the opti-
al sample rate of 417 Hz. Note that with the exception

f FD-PCG, the various methods converge to the mini-
um error from Fig. 2 in a few iterations with compa-

able computational effort. These plots are similar to the
nes produced in [3,19], except that the x axis counts mul-
iplications required rather than iterations.

We can compare the various cold-start and warm-start
chemes by evaluating the total cost in multiplications.
able 2 shows that the fastest convergence was obtained
hen we used GS with a W-cycle and the smallest num-
er of smoothing steps possible.

. Open-Loop Warm-Start Results
e now generate the analogous plot to Fig. 5 but using
arm start. We used the same simulation parameters

unning at the same optimal rate of 417 Hz. Note that it
s not a priori obvious that this is the right choice of
ample rate. In a warm-start configuration, if multiple it-
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ent methods using either a MG-PCG or FD-PCG preconditioner.
�	1 ,	2� is the number of presmoothing and postsmoothing steps.
nal effort. We averaged 1000 independent runs.
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rations are required to reach convergence, then it may be
etter to sample more frequently so that newer informa-
ion is being used in the iteration. In other words, it may
e better to not iterate to convergence before taking in the
ext measurement. However, we found that almost every

terative algorithm we tried converged in a single itera-
ion for the parameters used herein. Thus the separation
f the choice of algorithm and choice of sample rate re-
ains as in the cold-start case.
We used x̂0=0 to start the first iteration when the first
easurement arrived. Whenever a new measurement ar-

ived, we used the most recent estimate as an initial
uess for the subsequent iteration. We ran each test for
0 sampling intervals to ensure the iterative scheme was
perating in steady state (the transient behavior typically
isappeared after 3–6 measurements had been pro-
essed). The converged results were then used to compute
he relative piston-removed MSE.

For each iterative scheme, we varied the number of it-
rations executed during each sampling interval and plot-
ed the resulting average relative error; see Fig. 6. Only

Table 3. Cost Comparison (Fewest Possible
Iterations)a

Iterative
Scheme

Iteration
Cost

(Multiplications)

Iterations
per

Time Step

Total
Cost

(Multiplications)

FD-PCG 1.30�106 2 2.60�106

MG-PCG,
J(2,2)

9.01�105 1 9.01�105

MG, GS(2,2) 7.36�105 1 7.36�105

MG, J(1,0) 3.41�105 2 6.81�105

G-PCG, J(1,1) 6.38�105 1 6.38�105

MG, GS(1,0),
W-cycle

5.05�105 1 5.05�105

MG, GS(1,1) 4.72�105 1 4.72�105

MG, GS(1,0) 3.41�105 1 3.41�105

aThe iterations to convergence were extracted from Fig. 6. In a warm-start con-
guration, we do not need to iterate to convergence at every time step in order to
chieve the minimum error. Note that the methods are ordered differently here than
n Table 2. The cheapest method here is GS�1,0�.
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ig. 6. Plots comparing converged values of various methods us
(1,0) and FD-PCG, only one iteration per measurement is requir
as the smallest iteration cost. We averaged 1000 independent r
ne iteration per time step was required for every MG
ethod we tested with the exception of MG-J(1,0) and
D-PCG.
It is worth noting that by warm starting, we get no re-

uction in the expected steady-state error, just faster con-
ergence to that error. Thus, the trade-offs from Figs. 2
nd 4 still hold when we warm start.
See Table 3, where we compare the various iterative

chemes once again. This table tells us how much compu-
ation would be required to implement the algorithms in a
arm-start configuration rather than iterating to conver-
ence every time a new measurement arrives.

. Closed-Loop Results
n a closed-loop setting, the DM corrects the incident
hase before the sensors take measurements.
In this simulation, we began with a sequence of time-

orrelated piston-removed phase screens generated using
rroyo: �x1 ,x2 , . . . 
. We closed the loop in two different
ays: a standard loop closure (left) and a pseudo-open-

oop (POLC) [10] implementation (right):

yt = G�xt − ut−1� + vt, yt = G�xt − ut−1� + vt,

êt = Kyt, x̂t = K�yt + Gut−1�,

ut+1 = ut + �êt, ut+1 = ut + ��x̂t − ut−1�.

n the standard case, the iterative scheme is used to find
he estimated error, whereas in POLC, the previous input
s used to compute an equivalent open-loop measurement,
nd the iterative scheme is used to find an estimate of the
ctual phase screen xt. In both cases, K is one iteration of
he least-squares iterative scheme of our choice. In prac-
ice, a wide range of control gains lead to stable systems
ith the minimum error. We chose �=0.5 for all our simu-

ations.
Both models assume two time steps of delay: a one-step

elay to process the measurements since yt depends on
he past input ut−1, and a one-step delay to compute the
stimate since the future input ut+1 depends on yt. The
elative error at time step t is computed using the formula
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open-loop warm-start technique. For every method except MG-
minimum error. The best method to choose is simply the one that
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xt−ut−1�2 / �xt�2. This is analogous to the way we computed
he error for the cold-start and warm-start open-loop
imulations. Note that the average error in closed loop
ill be higher than the average error in open loop, be-

ause our closed-loop implementations have a two-step
elay.
We simulated the standard case using both cold start

nd warm start, and we simulated the POLC case using
arm start. In cold-start, POLC requires at least a few it-
rations per time step to converge to the minimum error,
s in Fig. 5. We found that all three loop closure schemes
re stable for every method we tested and that every one
an be implemented with one time step per iteration.

See Fig. 7 for the results. For the standard closed-loop
ase using cold start, every iterative scheme with the ex-
eption of MG-J(1,0) and FD-PCG converged to a mini-
um error floor. These are the only two methods we

ested that require more than one iteration per time step
o achieve the minimum error. Note that the iterative
cheme is estimating the error, and not the actual phase.
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ig. 7. Closed-loop time series in cold start (top), warm start (m
ated, performing one iteration per time step. We tested 15 differe
qually well, with the exception of MG-J(1,0) and FD-PCG in the
ince we expect the error to be small, an initial guess
alue of 0 (cold starting) produces fast convergence in
nly one iteration.

We can also use warm start with the standard case. Af-
er iterating, we store the error vector and use it to warm
tart our iteration at the next time step. With this small
hange, all the methods we tested converged to the mini-
um error floor with virtually identical error.
Finally, we tested the POLC case. In this case, we store

ur previously applied input and use it to convert our
losed-loop measurement into an open-loop measurement.
he iterative scheme is then used to estimate the actual
hase. This method benefits greatly from warm starting,
s one might expect from the open-loop results in Fig. 6.
nce again, all methods converged to the minimum error.
e also tried this method with cold start and found that

hree or four iterations per time step were typically re-
uired, as in Fig. 5.
This is the same conclusion we drew from the open-loop

arm-start plot, which means that we can compute the
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ost required for closed-loop implementation directly from
able 3. To find the required computer speed, we multiply
he total cost by the sample rate.

. CONCLUSION
e have explored the effectiveness of using warm-started

terative methods for AO reconstruction. In open-loop or
OLC, warm start provides a significant benefit. When
pplied to most iterative methods, convergence is
chieved in only one iteration, reducing the number of
ultiplications required by a factor of about 3.
For a standard closed-loop implementation, the advan-

age of warm starting is less significant because most it-
rative algorithms already achieve optimal performance
ith a single cold-started iteration per time step. The con-

rol removes much of the (large-amplitude) correlated in-
ormation between time steps so that the residual error is
oth smaller and less correlated. Nevertheless, when we
arm start in this case, every algorithm we tested pro-
ides the same minimal error, and convergence in one it-
ration per time step. This shows that iteration cost is the
ost meaningful performance metric.
In principle, any iterative scheme can be warm started

nd should always yield a computational speedup. For
ethods such as Fourier-based reconstruction, which do

ot afford an iterative implementation, it is not clear how
o take advantage of the warm-start approach.
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