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Abstract

Iterative optimization algorithms are a main engine behind large-scale
data processing applications such as computer vision and machine
learning. However, the design and use of such algorithms is currently
more art than science. We present a new analysis method for
optimization algorithms that is based on robust control theory. This
framework allows one to easily compute robust performance bounds
for a variety of algorithms by solving small convex programs. Rather
than testing different algorithms to see which ones perform best, we
can now prescribe desired properties e.g.“robust to 5% noise” and
then design the best algorithm that meets the specification.

Iterative optimization algorithms
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Gradient: xk+1 = xk − α∇f(xk)

Nesterov: xk+1 = xk − α∇f(xk + β(xk − xk−1))
+ β(xk − xk−1)

Heavy ball: xk+1 = xk − α∇f(xk)
+ β(xk − xk−1)

Robust control formulation
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how do we leverage knowledge
about f to inform our analysis or
design of the algorithm G?

G : discrete-time linear dynamical system (the iterative algorithm)

f : uncertain function that we will be minimizing

Ψ : filter that characterizes the input-ouput properties of f

IQCs for characterizing nonlinearities

If f is strongly convex: mI � ∇2f � LI and is minimized at
∇f(x?) = 0, then for any {y0, y1, . . . } with uk := ∇f(yk),
N∑
t=0

ρ−2k (zk − z?)TM(zk − z?) ≥ 0 ∀N and 0 ≤ ρ ≤ 1

Ψ :=

 0 −L 1

ρ2 L −1
0 −m 1

 and M :=

[
0 1
1 0

]

This is an example of a Zames-Falb IQC.

Main result [SIOPT’16]

Remove ∇f from the block diagram, obtain
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Let x be the combined state of (G,Ψ).
If the following SDP is feasible for P � 0 and λ ≥ 0[

ATPA− ρ2P ATPB
BTPA BTPB

]
+ λ [C D]TM [C D] � 0

Then we have exponential convergence:

‖xk − x?‖ ≤
√

cond(P ) ρk ‖x0 − x?‖

Case study: Nesterov and Heavy ball

What is the best bound on the rate of these algorithms if we assume
f is quadratic, has sector-bounded gradients, or is strongly convex?
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Nesterov: IQC upper bound is strictly tighter

than the best-known bound (dashed purple).

Heavy ball: IQC upper bound suggests Heavy

ball is not stable for strongly convex f (verified!)

Case study: noise robustness

How robust is an algorithm to gradient noise? If we use ūk instead of
uk, where ‖uk − ūk‖ ≤ δ‖uk‖, Nesterov’s method is not robust.
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Robustness recovered by designing (α, β1, β2) in a new algorithm:
xk+1 = xk − α∇f(xk + β1(xk − xk−1)) + β2(xk − xk−1)

Generalizations

The proximal operator defined below can be represented as a block

proxλg(x) := arg min
y

(
g(y) + 1

2λ
‖y − x‖2

)
x

λ∂g

+

−
diagram and ∂g can be characterized using
IQCs. This allows analysis of constrained
optimization, proximal point methods,
operator-splitting methods (e.g. ADMM), ...
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