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Abstract Main result [SIOPT’16]

lterative optimization algorithms are a main engine behind large-scale Remove Vf from the block diagram, obtain
data processing applications such as computer vision and machine
learning. However, the design and use of such algorithms is currently
more art than science. We present a new analysis method for
optimization algorithms that is based on robust control theory. This
framework allows one to easily compute robust performance bounds
for a variety of algorithms by solving small convex programs. Rather Let @ be the combined state of (G, ¥).

than testing different algorithms to see which ones perform best, we If the following SDP is feasible for P > 0 and A > O
can now prescribe desired properties e.g. “robust to 5% noise” and ATPA — p?P ATPB
then design the best algorithm that meets the specification. B'PA B'PB
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Then we have exponential convergence:

Iterative optimization algorithms | — ]| < /cond(P) p"* |lxo — x|

Gradient: ®p11 = xp — aVf(xk)
Nesterov: 11 = xp — aVf(xr + B(xr — Tr_1)) contours of f(il?)

+ B(zr, — z1) (quadratic function) Case study: Nesterov and Heavy ball

Heavy ball: Lk4+1 — L — OﬁVf(il}k)

What is the best bound on the rate of these algorithms it we assume
f is quadratic, has sector-bounded gradients, or is strongly convex?
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Nesterov: |QC upper bound is strictly tighter ~ Heavy ball: |QC upper bound suggests Heavy
than the best-known bound (dashed purple). ball is not stable for strongly convex f (verified!)

Case study: noise robustness

how do we leverage knowledge
about f to inform our analysis or

design of the algorithm G”? How robust is an algorithm to gradient noise? If we use 4y instead of

ug, where ||ug — ug|| < 8||ugl||, Nesterov's method is not robust.
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G : discrete-time linear dynamical system (the iterative algorithm)
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f : uncertain function that we will be minimizing
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W : filter that characterizes the input-ouput properties of f
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Robustness recovered by designing (o, 31, 32) in a new algorithm:
|IQCs for characterizing nonlinearities i1 = T — aVf(xg + Bi(xr — Tr_1)) + B2(xr — Tr_1)

If f is strongly convex: I < V?2f < LI and is minimized at
Vf(xz«) = 0, then for any {yo, Y1, . . . } with ug := Vf(yr), Generalizations

N
Z p (2 —2)"M(2z,—2,) >0 YVNand0< p<1 The proximal operator defined below can be represented as a block

P _ prox(z) := argmin(g(y) + 55lly — z|*)
L 1 .

diagram and Og can be characterized using r
VR EE L -1 and M := IQCs. This allows analysis of constrained - |
—m 1 optimization, proximal point methods, A Og

) operator-splitting methods (e.g. ADMM), ...

This is an example of a Zames-Falb [QC.
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