
AN AUTOMATIC SYSTEM TO DETECT EQUIVALENCE BETWEEN ITERATIVE
ALGORITHMS

SHIPU ZHAO∗, LAURENT LESSARD† , AND MADELEINE UDELL∗

Abstract. When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor
twist on an existing method? In this paper, we present a framework for reasoning about equivalence between a broad class of
iterative algorithms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means
for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition,
oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for
suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize
algorithm equivalence via transfer functions. Our framework can also identify and characterize some algorithm transformations
including permutations of the update equations, repetition of the iteration, and conjugation of some of the function oracles in
the algorithm. To support the paper, we have developed a software package named Linnaeus that implements the framework
to identify other iterative algorithms that are equivalent to an input algorithm. More broadly, this framework and software
advances the goal of making mathematics searchable.

Key words. optimization algorithm, algorithm equivalence, algorithm transformation.

1. Introduction. Large-scale optimization problems in machine learning, signal processing, and imag-
ing have fueled ongoing interest in iterative optimization algorithms. New optimization algorithms are reg-
ularly proposed in order to capture more complicated models, reduce computational burdens, or obtain
stronger performance and convergence guarantees.

However, the novelty of an algorithm can be difficult to establish because algorithms can be written in
different equivalent forms. For example, algorithm 1.1 was originally proposed by Popov [26] in the context
of solving saddle point problems. This method was later generalized by Chiang et al. [9, §4.1] in the context
of online optimization. Algorithm 1.2 is a reformulation of algorithm 1.1 adapted for use in generative
adversarial networks (GANs) [14]. Algorithm 1.3 is an adaptation of Optimistic Mirror Descent [27] used by
Daskalakis et al. [10] and also used to train GANs. Finally, algorithm 1.4 was proposed by Malitsky [20] in
the context of solving monotone variational inequality problems. In all four algorithms, the vectors xk1 and
xk2 are algorithm states, η is a tunable parameter, and F k(·) is the gradient of the loss function at time step
k.

Algorithm 1.1 (Modified Arrow–Hurwicz)

for k = 1, 2, . . . do
xk+1
1 = xk1 − ηF k(xk2)
xk+1
2 = xk+1

1 − ηF k(xk2)
end for

Algorithm 1.2 (Extrapolation from the past)

for k = 1, 2, . . . do
xk2 = xk1 − ηF k−1(xk−12)
xk+1
1 = xk1 − ηF k(xk2)

end for

Algorithm 1.3 (Optimistic Mirror Descent)

for k = 1, 2, . . . do
xk+1
2 = xk2 − 2ηF k(xk2) + ηF k−1(xk−12)

end for

Algorithm 1.4 (Reflected Gradient Method)

for k = 1, 2, . . . do
xk+1
1 = xk1 − ηF k(2xk1 − xk−11)

end for

Algorithms 1.1–1.4 are equivalent in the sense that when suitably initialized, the sequences (xk1)k≥0 and
(xk2)k≥0 are identical for all four algorithms.1 Although these particular equivalences are not difficult to verify
and many have been explicitly pointed out in the literature, for example in [14], algorithm equivalence is not
always immediately apparent. Indeed, it is not uncommon for algorithms to be unknowingly re-discovered in
a different but equivalent form and given a new name before anyone observes that they are not new after all.

In this paper, we present a framework for reasoning about algorithm equivalence, with the ultimate goal
of making the analysis and design of algorithms more principled and streamlined. This includes:

∗Cornell University (sz533@cornell.edu, udell@cornell.edu).
†Northeastern University (l.lessard@northeastern.edu).
1In their original formulations, algorithms 1.1, 1.2, and 1.4 included projections onto convex constraint sets. We assume an

unconstrained setting here for illustrative purposes. Some of the equivalences no longer hold in the constrained case.

1

mailto:sz533@cornell.edu
mailto:udell@cornell.edu
mailto:l.lessard@northeastern.edu

2

• A universal way of representing algorithms, inspired by the literature on control theory. Specifically,
we will use state-space realizations and transfer functions.

• A description of different ways in which two algorithms can be deemed equivalent, and how these
equivalences manifest themselves with regards to the algorithm representation.

• A computationally efficient way of verifying whether two algorithms belong to the same equivalence
class and how to transform between equivalent representations.

We also present a software package we named Linnaeus2, for the classification and taxonomy of iterative
algorithms. The software is a search engine, where the input is an algorithm described using natural syntax,
and the output is a canonical form for the algorithm along with any known names and pointers to relevant
literature. The approach described in this paper allows Linnaeus to search over first order optimization algo-
rithms such as gradient descent with acceleration, the alternating directions method of multipliers (ADMM),
and the extragradient method. As the database in Linnaeus grows, it will help algorithm researchers un-
derstand and efficiently discover connections between algorithms. More generally, Linnaeus advances the
goal of making mathematics searchable.

This paper is organized as follows. In section 2, we introduce three examples of equivalent algorithms
that motivate our framework. In section 3, we briefly review important background on linear systems and
optimization used throughout the paper. We formally define two notions of algorithm equivalence, oracle
equivalence and shift equivalence, in section 4 and discuss how to characterize them via transfer functions
in sections 5 and 6. Certain transformations can also be identified and characterized with our framework
including algorithm repetition, repeating an algorithm multiple times, and conjugation, a transformation using
conjugate function oracles. These are discussed in sections 7 and 8 respectively. In section 9, we introduce
our software package Linnaeus for the classification of iterative algorithms.

2. Motivating examples. To explain what we mean by algorithm equivalence, we introduce three
motivating examples in this section. Each provides a different view of how two algorithms might be equivalent.

Algorithm 2.1

for k = 0, 1, 2, . . . do
xk+1
1 = 2xk1 − xk2 − 1

10∇f(2xk1 − xk2)

xk+1
2 = xk1

end for

Algorithm 2.2

for k = 0, 1, 2, . . . do
ξk+1
1 = ξk1 − ξk2 − 1

5∇f(ξk1)

ξk+1
2 = ξk2 + 1

10∇f(ξk1)
end for

The first example consists of algorithms 2.1 and 2.2. These algorithms are equivalent in a strong sense:
when suitably initialized, we may transform the iterates of algorithm 2.1 by the invertible linear map ξk1 =
2xk1−xk2 , ξk2 = −xk1 +xk2 to yield the iterates of algorithm 2.2. We say that the sequences (xk1)k≥0 and (xk2)k≥0
are equivalent to sequences (ξk1)k≥0 and (ξk2)k≥0 up to an invertible linear transformation.

Algorithm 2.3

for k = 0, 1, 2, . . . do
xk+1
1 = 3xk1 − 2xk2 + 1

5∇f(−xk1 + 2xk2)

xk+1
2 = xk1

end for

Algorithm 2.4

for k = 0, 1, 2, . . . do
ξk+1 = ξk − 1

5∇f(ξk)
end for

The second example consists of algorithms 2.3 and 2.4. These algorithms do not even have the same
number of state variables, so these algorithms are not equivalent up to an invertible linear transformation.
But when suitably initialized, we may transform the iterates of algorithm 2.3 by the linear map ξk = −xk1+2xk2
to yield the iterates of algorithm 2.4. This transformation is linear but not invertible. Instead, notice that
the sequence of calls to the gradient oracle are identical: the algorithms satisfy oracle equivalence, a notion
we will define formally later in this paper.

2Named after Carl Linnaeus, a botanist and zoologist who invented the modern system of naming organisms.

3

Algorithm 2.5

for k = 0, 1, 2, . . . do
xk+1
1 = proxf (xk3)

xk+1
2 = proxg(2x

k+1
1 − xk3)

xk+1
3 = xk3 + xk+1

2 − xk+1
1

end for

Algorithm 2.6

for k = 0, 1, 2, . . . do
ξk+1
1 = proxg(−ξk1 + 2ξk2) + ξk1 − ξk2
ξk+1
2 = proxf (ξk+1

1)
end for

The third example consists of algorithms 2.5 and 2.6. With suitable initialization, they will generate the
same sequence of calls to the proximal operator, ignoring the very first call to one of the oracles. Specifically,
algorithm 2.6 is initialized as ξ01 = x03, ξ02 = x11 and the first call to proxf in algorithm 2.5 is ignored. We will
say they are equivalent up to a prefix or shift: they satisfy shift equivalence.

Generalizing from these motivating examples, we will call algorithms equivalent when they generate an
identical sequence (e.g., of states or oracle calls) up to some transformations, with suitable initialization. To
make our ideas formal, we need a few definitions and some ideas from control theory. We will then revisit
those motivating examples and define algorithm equivalence.

3. Preliminaries. We let Rn denote the standard Euclidean space of n-dimensional vectors, and use
boldface lowercase symbols denote semi-infinite sequences of vectors, which we index using superscripts. For
example, we may write x := (x0, x1, . . .), where xk ∈ Rn for each k ≥ 0. Subscripts index components or
subvectors: for example, we may write x = [x1

x2
] ∈ Rn, where x1 ∈ Rn1 and x2 ∈ Rn−n1 .

3.1. Optimization.
Optimization problem, objective, and constraints. An optimization problem is identified by an objective

function and a constraint set. The objective may be written as the sum of several functions, and the constraint
set may be the intersection of several sets. As an example, in the optimization problem (3.1) [4]

(3.1)
minimize f(x) + g(z)
subject to Ax+Bz = c,

the objective function is f(x) + g(z) and the constraint set is {(x, z) : Ax+Bz = c}.
Oracles. We assume an oracle model of optimization: we can only access an optimization problem by

querying oracles at discrete query points [5, §4; 6, §1; 23, §1]. Oracles might include the gradient or proximal
operator of a function, or projection onto a constraint set [2, §6; 13, §2; 25, §1]. Each query to the oracle
returns an output such as the function value, gradient, or proximal operator. For example, the oracles
for problem (3.1) might include the gradients or proximal operators of f and g, and projection onto the
hyperplane {(x, z) : Ax+Bz = c}.

3.2. Algorithms. Detecting equivalence between any pair of algorithms is beyond the scope of this
paper. Instead, we restrict our attention to equivalence between iterative linear time invariant optimization
algorithms. In the following section, we provide some intuition and define each of these terms. Further
formalism of these terms will be provided in the next subsection on control theory.

Iterative algorithms. Given an optimization problem and an initial point x0 ∈ X , an iterative algorithm
A generates a sequence of points x := (xk)k≥0 by repeated application of the map A : X → X . (We do not
distinguish the algorithm from its associated map.) Hence, xk+1 = A(xk) for k ≥ 0. We call xk the state of
the algorithm at time k. We make two important simplifying assumptions when treating algorithms.

First, suppose the operator A calls each different oracle exactly once. (We will see how to extend our ideas
to more complex algorithms later.) This assumption forbids trivial repetition, such as A′ := A◦A. Second, we
consider algorithms that are time-invariant. In general, one could envision an algorithm Ak that changes at
each timestep. Such time-varying algorithms are common in practice: for example, gradient-based methods
with diminishing stepsizes. We view time-varying algorithms as a scheme for switching between different
time-invariant algorithms. Since our aim is to reason about algorithm equivalence, we restrict our attention
to time-invariant algorithms. A nice benefit of only this restriction is that we can define algorithm equivalence
independently of the choice of initial point.

The formulation xk+1 = A(xk) is general enough to include algorithms with multiple timesteps. For
example consider algorithm 1.4: xk+1

1 = xk1 − ηF (2xk1 − xk−11). If we define the new state xk2 := xk−11 and let

4

xk :=
[
xk1
xk2

]
, then we may rewrite the algorithm as

(3.2) xk+1 =

[
xk+1
1

xk+1
2

]
=

[
xk1 − ηF (2xk1 − xk2)

xk1

]
= A

([
xk1
xk2

])
= A(xk).

The algorithm A contains a combination of oracle calls and state updates. Define yk and uk to be the
input and output of the oracles called at time k, respectively. Now, write three separate equations for the
state update, oracle input, and oracle output. Applying this to (3.2), we obtain:[

xk+1
1

xk+1
2

]
=

[
1 0
1 0

] [
xk1
xk2

]
+

[
−η
0

]
uk (state update),(3.3a)

yk =
[
2 −1

] [xk1
xk2

]
(oracle input),(3.3b)

uk = F (yk) (oracle output).(3.3c)

Oracle sequence. We have defined an algorithm A as a map X → X . In optimization, it is also conven-
tional to write an algorithm as a sequence of update equations, that are executed sequentially on a computer
to implement the map. When this sequence of updates is executed, we may record the sequence of states
or the sequence of oracle calls (oracle and input pairs), which we call the oracle sequence. There may be
several ways of writing the algorithm as a sequence of updates, which may produce different state sequences
or oracle sequences. We are not aware of any practical algorithm for optimization that may be written to
produce two different oracle sequences. Hence we will assume for now that the oracle sequence produced by
an algorithm is unique. We will revisit this assumption later in the paper (section 6) to see how our ideas
extend to more complex (not-yet-discovered) algorithms.

Linear algorithms. The equations (3.3) have the general linear form

xk+1 = Axk +Buk,(3.4a)

yk = Cxk +Duk,(3.4b)

uk = φ(yk).(3.4c)

We say that a time-invariant algorithm is linear if it can be written in the form of (3.4), where xk is the
algorithm state and φ is the set of oracles.

In the rest of the paper, unless specifically noted, our discussion is limited to linear algorithms. We
will see that linear algorithms are a rich class that includes many commonly used algorithms, such many
accelerated methods, proximal methods, operator splitting methods, and more [16,18].

The general form (3.4) represents a convenient parameterization of linear algorithms in terms of matrices
(A,B,C,D), but it is only a starting point. For example, algorithms 1.1–1.4 have different (A,B,C,D)
parameters despite being equivalent algorithms. In the next section, we show how tools from control theory
can be brought to bear on these sorts of representations.

3.3. Control theory. This subsection provides a brief overview of relevant methods and terminology
from control theory. More detail can be found in standard references such as [1, Ch. 1–3] and [35, Ch. 1,2,5].

Algorithms as linear systems. Let u denote the entire sequence of uk and y denote the entire sequence of
yk. The equations in (3.4) can be separated into two parts. Equations (3.4a) and (3.4b) define a map H from
u to y compactly as y = Hu, while (3.4c) defines a map Φ from y to u as u = Φy, where Φ = diag{φ, φ, . . . }.
We can represent these algebraic relations visually via the block-diagram shown in figure 1.

H

Φ

uy

Fig. 1. Block-diagram representation of an algorithm. This is equivalent to the pair of equations y = Hu and u = Φy.

5

Consider map H defined by (3.4a) and (3.4b). For simplicity, we assume that x0 = 0. As we eliminate
{x1, . . . , xk} from (3.4a) and (3.4b), map H can be represented as an semi-infinite matrix,

(3.5)


y0

y1

y2

y3

...

 =


D 0 0 0 · · ·
CB D 0 0 · · ·
CAB CB D 0 · · ·
C(A)2B CAB CB D · · ·

...
. . .

. . .
. . .

. . .


︸ ︷︷ ︸

H


u0

u1

u2

u3

...

 .

In control theory, map H is considered as a (discrete-time) system that maps a sequence of inputs u
to a sequence of outputs y. Map H is linear since it can be represented as a semi-infinite matrix. The
matrix representation is lower-triangular and it indicates H is causal. Further, H is time-invariant because
the matrix representation is (block) Toeplitz, which means that H is (block) constant along diagonals from
top-left to bottom right. Thus, H is a causal linear time-invariant system. For the rest of this paper, we will
work with such systems and we will refer to such systems as linear systems.

Further, to combine maps H and Φ together, a linear algorithm in the form of (3.4) can be regarded as
a linear system connected in feedback with a nonlinearity shown by figure 1. At time k, uk is the input and
yk is the output of the system. Nonlinear feedback φ represents the set of oracles such as the gradient or
subgradient of a convex function and it maps the output yk to the input uk.

State-space realization. Reconsider equations (3.4a) and (3.4b). They correspond to the state-space
realization of system H. In control theory, a state-space realization is characterized by an internal sequence
of states x that evolves according to a difference equation with parameters (A,B,C,D):

(3.6)
xk+1 = Axk +Buk,

yk = Cxk +Duk,
or equivalently,

[
xk+1

yk

]
= L

[
xk

uk

]
, where L =

[
A B
C D

]
.

Here, uk ∈ Rm, yk ∈ Rp, and xk ∈ Rn. The parameters (A,B,C,D) are matrices of compatible dimensions,
so A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The state-space realization corresponding to the
system H can also be characterized by omitting all vectors and writing the block matrix L shown in (3.6)
(right), which is the map from (xk, uk) to (xk+1, yk).

In this paper, we rely on such formalism that represents algorithms as linear systems using a state-space
realization as (3.6) for each algorithm, following [16, 18]. The state-space realization L represents the linear
part of an algorithm and map φ represents the nonlinear part. Moreover, we have A = (L, φ). In this way,
we can unroll figure 1 in time to obtain the block-diagram shown in figure 2. Each dashed box in figure 2
represents map A for each iteration.

L
xk−1. . . xk

φ yk−1
uk−1

L
xk+1

φ ykuk

L
. . .

φ yk+1
uk+1

Fig. 2. Unrolled-in-time block-diagram representation of an algorithm.

Impulse response and transfer function. From (3.5), without the assumption that x0 = 0, we can obtain

(3.7) yk = C(A)kx0 +

k−1∑
j=0

C(A)k−(j+1)Buj +Duk.

The output yk is the sum of C(A)kx0, which is due to the initial condition x0, and
∑k−1
j=0 C(A)k−(j+1)Buj +

Duk, which is due to the inputs {u0, . . . , uk}. The compact form y = Hu and its matrix representation (3.5)
omit the first term that depends on x0. These representations are formally equivalent to the state-space

6

model only when the state is initialized at x0 = 0. However, linearity of H allows the two contributions to
be studied separately:

(total response) = (zero input response)︸ ︷︷ ︸
set uk = 0 for k ≥ 0

+ (zero state response)︸ ︷︷ ︸
set xk = 0

.

This decomposition is analogous to writing the general solution to a linear differential (or difference) equation
as the sum of a homogeneous solution (due to initial conditions only) and a particular solution (due to the
non-homogeneous terms only). We will characterize linear systems by their input-output map. The input-
output map depends only on the zero state response, which allows us to avoid details about initialization.
For simplicity, we denote the entries in the matrix representation of H in (3.5) as

(3.8) Hk =

{
D k = 0

C(A)k−1B k ≥ 1
.

To study the zero state response, recall from (3.5) that

(3.9) yk = Hku0 +Hk−1u1 + · · ·+H1uk−1 +H0uk.

The sequence (Hk)k≥0 is called the impulse response of H, because it corresponds to the impulsive input
u0 = 1 and uj = 0 for j ≥ 1.

A convenient way to represent H is via the use of a transfer function. To this end, we can represent y
and u as generating functions in the variable z−1. Equating powers of z−1, we have:

(3.10)
(
y0 + y1z−1 + y2z−2 + · · ·

)︸ ︷︷ ︸
ŷ(z)

=
(
H0 +H1z−1 +H2z−2 + · · ·

)︸ ︷︷ ︸
Ĥ(z)

(
u0 + u1z−1 + u2z−2 + · · ·

)︸ ︷︷ ︸
û(z)

.

We can recover (3.9) by expanding the multiplication in (3.10) and grouping terms with the same power of
z−1. So when written as generating functions, the output is related to the input via multiplication. The
functions ŷ and û are the z-transforms of the sequences y and u, respectively, and Ĥ is called the transfer
function. If p ≥ 2 or m ≥ 2 (the Hk are matrices), then Ĥ is called the transfer matrix.

Substituting (3.8) into the definition of the transfer function, we can write a compact form for the formal
power series Ĥ, which converges on some appropriate set:

(3.11) Ĥ(z) =

[
A B
C D

]
= D +

∞∑
k=1

C(A)k−1Bz−k = C(zI −A)−1B +D.

The transfer function Ĥ(z) = C(zI − A)−1B + D can be directly computed from the state-space matrices
(A,B,C,D). Moreover, Ĥ(z) is a matrix whose entries are rational functions of z. Hence the transfer function
provides an computationally efficient way to uniquely characterize the input-output map of a system. We
will use the block notation with solid lines to indicate transfer function as in (3.11).

Linear transformations of state-space realizations. Consider a linear transformation of the states xk

in (3.6). Specifically, suppose Q ∈ Rn×n is invertible, and define x̃k = Qxk for each k. The new state-space
realization in terms of the new variables x̃k is

(3.12)
x̃k+1 = QAQ−1x̃k +QBuk

yk = CQ−1x̃k +Duk
, L̃ =

[
QAQ−1 QB
CQ−1 D

]
.

It is straightforward to check that H and H̃ have the same transfer function. Therefore, whether we apply
the linear system H or H̃, the same input sequence u will produce the same output sequence y, although the
respective states xk and x̃k will generally be different. So although the state-space realization (A,B,C,D)
depend on the coordinates used to represent states xk, the transfer function is invariant under linear trans-
formations.

This invariance is the key to understanding when two optimization algorithms are the same, even if
they look different as written. For example, this idea alone suffices to show that algorithms 2.1 and 2.2 are
equivalent.

7

Minimal realizations. Every set of appropriately-sized state-space parameters (A,B,C,D) produces a
transfer matrix whose entries are rational functions of z. Closer inspection of the formula Ĥ(z) = C(zI −
A)−1B + D reveals that Ĥ(z) → D as z → ∞. Therefore, the rational entries of Ĥ(z) must be proper : the
degree of the numerator cannot exceed the degree of the denominator. Moreover, the degree of the common
denominator of all entries of Ĥ(z) cannot exceed n (the size of the matrix A).

The converse is also true: given any transfer matrix Ĥ(z) whose entries are proper with common denom-
inator degree n, there exists a realization (A,B,C,D) where A has size at most n whose transfer function is
Ĥ(z). Any realization of Ĥ(z) for which the size of A is as small as possible is called minimal. All minimal
realizations of Ĥ(z) are related by an invertible state transformation via a suitably chosen invertible matrix
Q, as in (3.12).

Realizations can be non-minimal when the transfer function has factors that cancel from both the numer-
ator and denominator. For example, the following pair of state-space equations both have the same transfer
function:

Ĥ(z) =

[
1 1
1 0

]
= 1 · (z − 1)−1 · 1 =

1

z − 1
,

Ĥ(z) =

 1 2 1
0 3 0
1 6 0

 =
[
1 6

] [z − 1 −2
0 z − 3

]−1 [
1
0

]
=

z − 3

z2 − 4z + 3
=

1

z − 1
.

We can detect when two optimization algorithms are equivalent, even when one has additional (redundant)
state variables, by computing their minimal realizations. This strategy shows that algorithms 2.3 and 2.4 are
equivalent.

Inverse of state-space realization. Consider a state-space system H with realization (3.6) and for which
m = p (input and output dimension are the same). Is it possible to find a state-space system H−1 that maps
y back to u? It turns out this is possible if and only if D is invertible. In this case, the transfer function of
H−1 is Ĥ−1(z), a matrix whose entries are rational functions of z. We write the state-space realization of
the inverse system H−1 as

Ĥ−1(z) =

[
A B
C D

]−1
=

[
A−BD−1C BD−1

−D−1C D−1

]
.

This explicit realization can be obtained by applying the matrix inversion lemma to (3.11).
We can extend this idea to partial inverses of linear systems. Suppose the input sequence u is partitioned

as

u := (u0, u1, . . .) =

([
u01
u02

]
,

[
u11
u12

]
, . . .

)
=

[
u1

u2

]
, where uk1 ∈ Rm1 , uk2 ∈ Rm2 for all k ≥ 0

and similarly for y. The matrix D and transfer matrix Ĥ(z) can also be partitioned conformally as
(3.13)

D =

[
D11 D12

D21 D22

]
and Ĥ(z) =

[
Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

]
, where Dij ∈ Rpi×mj and similarly for Ĥ(z).

If D11 is invertible, we can partially invert H with respect to u1 and y1 to form a new system H′ that maps
(y1,u2) 7→ (u1,y2). The transfer function Ĥ ′(z) of the new system H′ satisfies

(3.14) Ĥ ′(z) =

[
Ĥ−111 (z) −Ĥ−111 (z)Ĥ12(z)

Ĥ21(z)Ĥ−111 (z) Ĥ22(z)− Ĥ21(z)Ĥ−111 (z)Ĥ12(z)

]
.

A detailed proof of (3.14) is presented in appendix A. Note that if D22 is invertible, we can perform a
similar partial inverse with respect to the second component.

When an optimization algorithm is related to another by conjugation of one of the function oracles, their
transfer functions are related by (possibly partial) inversion.

4. Algorithm equivalence. We are now ready to revisit the motivating examples and formally define
algorithm equivalence.

8

4.1. Oracle equivalence.
In the first motivating example, the algorithms have the same number of states, and the state sequences

are equivalent up to an invertible linear transformation. We call these algorithms state-equivalent.
In the second motivating example, the state sequence of algorithm 2.3 can be transformed into the state

sequence of algorithm 2.4 with a linear transformation. However, unlike the first motivating example, the
linear transformation is not invertible; indeed, algorithm 2.4 uses fewer state variables than algorithm 2.3.
Instead, recall that the sequence of calls to the gradient oracle are identical for algorithms 2.3 and 2.3. Hence
these algorithms are oracle-equivalent.

Definition 4.1. Two algorithms are oracle-equivalent on a set of optimization problems if, for any
problem in the set and for any initialization for one algorithm, there exists an initialization for the other such
that the two algorithms generate the same oracle sequence.

Notice that if the oracle sequences (that is, the oracles and their arguments yk) are the same, then the
oracles produce the same inputs uk for the linear systems of each algorithm. Hence, as shown in figure 3,
oracle-equivalent algorithms have matching input u and output y sequences. The solid double-sided arrow
indicates the sequences yk and ỹk are identical, and the sequences uk and ũk are identical.

L
xk−1. . . xk

φ yk−1
uk−1

L
xk+1

φ ykuk

L
. . .

φ yk+1
uk+1

L̃
x̃k−1. . . x̃k

φ̂ ỹk−1
ũk−1

L̃
x̃k+1

φ̃ ỹkũk

L̃ . . .

φ̃ ỹk+1
ũk+1

Fig. 3. Unrolled block-diagram representation of oracle equivalence.

Further, since oracle-equivalent algorithms have identical input and output sequences, many analytical
properties of interest, particularly those pertaining to algorithm convergence or robustness, are preserved.
For example, suppose the target problem is to minimize f(x) with x ∈ Rn, with solution x? and corresponding
objective value f(x?). Further suppose f is convex and differentiable with oracle ∇f . If two algorithms are
oracle-equivalent, the sequence of gradients ‖∇f(x)‖, distance to the solution ‖x− x?‖, and objective function
values ‖f(x)− f(x?)‖ evolve identically, so they have the same worst-case convergence, etc. Moreover, even
if the oracle is noisy (e.g., suffers from additive or multiplicative noise, or even adversarial noise), from the
point of view of the oracle, the algorithms are indistinguishable and any analytical property that involves
only the oracle sequence will be the same.

4.2. Shift equivalence.

L
xk−1
1 , xk−1

2 , xk−1
3

. . . xk1 , xk2 , xk3

φ yk−1
1 , yk−1

2uk−1
1 , uk−1

2

L
xk+1
1 , xk+1

2 , xk+1
3

φ yk1 , yk2uk
1 , uk

2

. . .

L̃
x̃k−1
1 , x̃k−1

2 , x̃k−1
3

. . . x̃k1 , x̃k2 , x̃k3

φ̂ ỹk−1
1 , ỹk−1

2ũk−1
1 , ũk−1

2

L̃
x̃k+1
1 , x̃k+1

2 , x̃k+1
3

φ̃ ỹk1 , ỹk2ũk
1 , ũk

2

. . .

Fig. 4. Unrolled block-diagram representation of shift equivalence.

Now consider algorithms 2.5 and 2.6 from the third motivating example. They are not oracle-equivalent.
However, their input and output sequences become identical after shifting algorithm 2.5 one step backward:
these algorithms are shift-equivalent.

9

Definition 4.2. Two algorithms are shift-equivalent on a set of problems if, for any problem in the set
and for any initialization for one algorithm, there exists an initialization for the other such that the oracle
sequences match up to a prefix.

Shift equivalence can also be interpreted as oracle equivalence up to a shift. We depict shift equivalence
graphically in figure 4. Conversely, oracle equivalence can be regarded as a special case of shift equivalence,
where the oracle sequences match without any shift.

4.3. Discussion.
One algorithm, many interpretations. Is it useful to have many different forms of an algorithm, if all

the forms are (oracle- or shift-)equivalent? Yes: different rewritings of one algorithm often yield different
(“physical”) intuition. For example, algorithm 1.1 uses the current loss function for extrapolation [33]; while
algorithm 1.2 seems to extrapolate from the previous loss function [7]. Equivalent algorithms can differ in
memory usage, computational efficiency, or numerical stability. For example, implementations of algorithms
1.3 and 1.4 lead to different memory usage [10,20]. In each time step k, algorithm 1.3 needs to store xk2 , x

k+1
2

and F k(·), but algorithm 1.4 only needs to store xk1 and xk+1
1 in memory.

Limitations. Do these formal notions of equivalence capture everything an optimization expert might
mean by “equivalent algorithms”? No: an example is shown in algorithm 4.1. Algorithms 4.1 and 2.4
are related by a nonlinear state transformation, xk = exp(ξk). However, none of the equivalences we have
discussed capture this example. The difficulty is that algorithm 4.1 is a nonlinear algorithm, while all of
our machinery for detecting algorithm equivalence requires linearity. While notions of nonlinear equivalence
are certainly interesting, in this paper we will define only those types of equivalence that our framework can
detect.

Algorithm 4.1

for k = 1, 2, . . . do
xk+1 = xkexp(− 1

5∇f(logxk))
end for

5. A characterization of oracle equivalence. In this section, we will discuss how to characterize
oracle equivalence via transfer functions. Recall that oracle equivalence, introduced in section 4, characterizes
an algorithm by its oracle sequence. This sequence is uniquely determined by the initialization of the algorithm
(which we ignore) and the input-output map of the linear system representing the algorithm. While the state-
space realization of two equivalent algorithms may differ, from subsection 3.3, recall that the transfer function
of a linear system uniquely characterizes the system as an input-output map. Fortunately, using (3.11), we
can directly calculate the transfer function from the state-space realization of an algorithm; and we can use
equality of transfer functions to check if two algorithms are equivalent. This machinery allows us to avoid
the issue of initialization (or of the optimization problem!) entirely, as we can check algorithm equivalence
without ever producing a sequence of iterates.

More formally, consider two oracle-equivalent algorithms with the same number of oracle calls in each
iteration. From subsection 4.1, we know that for every optimization problem, and for every initialization of
the first algorithm, there exists an initialization of the second algorithm so that the oracle sequence of the two
algorithms is the same. Concretely, by picking the initialization of the second algorithm appropriately, we
can ensure that the first output of the linear systems match. Hence (since the oracles are the same), the first
input of the linear systems match, and so the second output of the linear systems match, etc. By induction,
for each possible sequence of input u, they produce identical sequences of output y. Then from subsection
3.3, the algorithms must have identical impulse responses and consequently identical transfer functions. In
light of the previous discussion, we have proved the following proposition, since each step in the reasoning
above is necessary and sufficient.

Proposition 5.1. Algorithms with the same number of oracle calls in each iteration are oracle-equivalent
if and only if they have identical transfer functions.

Importantly, oracle-equivalent algorithms have the same transfer function, even if they have a different
number of state variables. But any realization of the algorithm must have at least as many state variables
as the minimal realization of the linear system.

10

Oracle-equivalent algorithms have identical oracle sequences and hence converge to the same fixed point
(if they converge). Suppose algorithm A1 : X → X with (nonlinear) oracle φ : X → X and state-space
realization (A1, B1, C1, D1), converges to a fixed point (y?, u?, x?) that satisfies

(5.1)

x? = A1x
? +B1u

?

y? = C1x
? +D1u

?

u? = φ(y?).

If algorithm A2 is oracle-equivalent to A1, A2 converges to a fixed point (y?, u?, x̃?) that has the same output
and input as the fixed point of A1; however, the state x̃? may not be the same, or even have the same
dimension.

Further, if there is an invertible linear map Q between the states of A1 and A2 and (y?, u?, x?) is a fixed
point of A1, then (y?, u?, Qx?) is a fixed point of A2. We can use this fact to derive a relation between the
state-space realizations of the two algorithms: the fixed point equation for A2 can be written as

(5.2)

Qx? = QA1Q
−1Qx? +QB1u

?

y? = C1Q
−1Qx? +D1u

?

u? = φ(y?),

which shows that the state-space realization of A2 is

(5.3)

[
QA1Q

−1 QB1

C1Q
−1 D1

]
,

which can be obtained by (3.12).

5.1. Motivating examples: proof of equivalence. Now, we will revisit the first and second moti-
vating examples and apply proposition 5.1 to show equivalence.

algorithm 2.1 and algorithm 2.2. The state-space realization and transfer function of algorithm 2.1 are
shown as

Ĥ1(z) =

 2 −1 − 1
10

1 0 0
2 −1 0

 =
[

2 −1
](

zI −
[

2 −1
1 0

])−1 [− 1
10
0

]
=
−2z + 1

10(z − 1)2
.

The state-space realization and the transfer function of algorithm 2.2 are

Ĥ2(z) =

 1 −1 − 1
5

0 1 1
10

1 0 0

 =
[

1 0
](

zI −
[

1 −1
0 1

])−1 [− 1
5

1
10

]
=
−2z + 1

10(z − 1)2
.

Hence we see algorithms 2.1 and 2.2 have the same transfer function, so by proposition 5.1 they are oracle-
equivalent. In fact, since the algorithms have the same number of state variables, there exists an invertible
linear transformation

Q =

[
2 −1
−1 1

]
to convert the state-space realization of algorithm 2.1 to the state-space realization of algorithm 2.2 following
(3.12).

algorithm 2.3 and algorithm 2.4. The state-space realization and transfer function of algorithm 2.3 are

Ĥ3(z) =

 3 −2 1
5

1 0 0
−1 2 0

 =
[
−1 2

](
zI −

[
3 −2
1 0

])−1 [1
5
0

]
= − 1

5(z − 1)
.

The state-space realization and transfer function of algorithm 2.4 are

Ĥ4(z) =

[
1 − 1

5

1 0

]
=
[

1
] (
zI −

[
1
])−1 [− 1

5

]
= − 1

5(z − 1)
.

11

Algorithms 2.3 and 2.4 have the same transfer function, so by proposition 5.1 they are oracle-equivalent. On
the other hand, they have different numbers of states. Consider the invertible linear transformation

Q =

[
−1 2
0 1

]
.

Applying Q to the state-space realization of algorithm 2.3 leads to 1 0 − 1
5

−1 2 0
1 0 0

 ,
where we have used dashed lines to demarcate the blocks in the state-space realization. This has the same
minimal realization as algorithm 2.4 according to subsection 3.3 on minimal realizations.[

1 − 1
5

1 0

]
.

Note that the state-space realization of algorithm 2.4 is a minimal realization. This shows the reason why
algorithms 2.3 and 2.4 are equivalent even if they have different numbers of states.

Now we show how the sausage was made. Algorithm 2.3 was designed by starting with the more complex
Triple momentum algorithm algorithm 5.1 [18, 32] and choosing parameters of the algorithm so its transfer
function matched algorithm 2.4.

Algorithm 5.1 Triple momentum algorithm

for k = 0, 1, 2, . . . do
xk+1
1 = (1 + β)xk1 − βxk2 − α∇f((1 + η)xk1 − ηxk2)
xk+1
2 = xk1

end for

The state-space realization and transfer function of algorithm 5.1 are

(5.4) Ĥ7(z) =

 1 + β −β −α
1 0 0

1 + η −η 0

 = −α((η + 1)z − η)

(z − 1)(z − β)
.

We now demand that (5.4)(right) must equal the transfer function of algorithm 2.4 for all values of z, resulting
in the equations

(5.5)
5α(η + 1) = 1

5αη = β.

We solve for the parameters α, η and β to find a solution α = − 1
5 , β = 2 and η = −2 to (5.5) that corresponds

to algorithm 2.3. Other solutions exist: for example, α = 1, β = −4 and η = − 4
5 solves (5.5) and yields

another (different!) algorithm equivalent to algorithm 2.4.

6. A characterization of shift equivalence. We can also characterize shift equivalence using transfer
functions. Suppose an algorithm uses more than one oracle, and the call to the second oracle depends on the
value of the first. Take algorithm 2.5 as example: at iteration k, the first update equation calls the oracle
proxf to compute xk+1

1 = proxf (xk3), and the second update equation calls the oracle proxg to compute

xk+1
2 = proxg(2x

k+1
1 − xk3). This second update relies on the value of xk+1

1 . Imagine now that we reorder
the update equations by some permutation. Generally this change produces an entirely different algorithm.
But if the permutation is a cyclic permutation, the order of the oracle calls is preserved. In the example of
algorithm 2.5, we could start with the update equation xk+1

2 = proxg(2x
k+1
1 − xk3) and produce exactly the

same sequence of oracle calls (after the first) by initializing xk+1
1 and xk3 appropriately. This new algorithm

is shift-equivalent to algorithm 2.5 by definition 4.2.

12

Algorithm 2.5 has three update equations, and so there are two other algorithms that may be produced
by cyclic permutations of algorithm 2.5, shown below as algorithms 6.1 and 6.2.

Algorithm 6.1

for k = 0, 1, 2, . . . do
xk+1
2 = proxg(2x

k+1
1 − xk3)

xk+1
3 = xk3 + xk+1

2 − xk+1
1

xk+1
1 = proxf (xk3)

end for

Algorithm 6.2

for k = 0, 1, 2, . . . do
xk+1
3 = xk3 + xk+1

2 − xk+1
1

xk+1
1 = proxf (xk3)

xk+1
2 = proxg(2x

k+1
1 − xk3)

end for

Both are shift-equivalent to algorithm 2.5, but algorithm 6.2 is also oracle-equivalent to algorithm 2.5.
(We will revisit and formally prove this result later.) It is easy to see why: the oracles proxf and proxg are
called in the same order in algorithms 2.5 and 6.2, but in the opposite order in algorithm 6.1.

We introduce notation to generalize this idea to more complex algorithms. Consider an algorithm A
that consists of m update equations and makes n sequential oracle calls in each iteration. We insist that no
update equation may contain more than one oracle call, so m ≥ n. At iteration k, the algorithm generates
states xk1 , . . . , x

k
m, outputs yk1 , . . . , y

k
n, and inputs uk1 , . . . , u

k
n, respectively. Consider any permutation π̃ of the

sequence (m) = (1, . . . ,m). We call algorithm B = Pπ̃A a permutation of algorithm A if B performs the
update equations of A in the order π̃ at each iteration. The algorithms A and B are shift-equivalent if and
only if π̃ is a cyclic permutation of (m).

Proposition 6.1. An algorithm and any of its cyclic permutations are shift-equivalent.

Proof. We provide a proof sketch here, and defer a detailed proof to appendix B. Let us name the oracle
calls of the original algorithm A so that the oracles are called in order (n). Suppose B = Pπ̃A where π̃
is a cyclic permutation of (m). The permutation of update equations may reorder the oracle calls within
one iteration, so that the oracle calls in algorithm B follow a cyclic permutation π of (n) (possibly, the
identity). Hence A and B are shift-equivalent. (If the permutation is the identity, then the algorithms are
also oracle-equivalent.)

6.1. Reordering oracle calls. Most optimization algorithms proceed by sequential updates, each of
which depends on the previous update. However, for completeness, we consider a more general class of
equivalences that arises for algorithms whose oracle updates have a more complex dependency structure.
We may express the order of oracle calls at each iteration using a directed graph, where the graph has edge
from oracle i to oracle j if oracle call j depends on the result of oracle call i (within the same iteration). In
other words, within the iteration we must call oracle i before oracle j. We call this directed graph the oracle
dependence graph (ODG) of the algorithm.

An example is provided below as algorithm 6.3. Note that we are not aware of any practical algorithm
for optimization with this ODG. It is constructed only for illustration.

Algorithm 6.3

for k = 0, 1, 2, . . . do
xk+1
1 = xk4 − t∇f(xk4)
xk+1
2 = xk+1

1 − t∇g(xk+1
1)

xk+1
3 = xk+1

1 − t∇h(xk+1
1)

xk+1
4 = proxtf (xk+1

2 + xk+1
3)

end for

Algorithm 6.4

for k = 0, 1, 2, . . . do
xk+1
1 = xk4 − t∇f(xk4)
xk+1
3 = xk+1

1 − t∇h(xk+1
1)

xk+1
2 = xk+1

1 − t∇g(xk+1
1)

xk+1
4 = proxtf (xk+1

2 + xk+1
3)

end for

Figure 5 expresses the dependency of oracle calls within each iteration of algorithm 6.3. At each iteration,
oracle calls 2 (∇g) and 3 (∇h) depends on the result of oracle call 1 (∇f); oracle call 4 (proxtf) depends on
the results of oracle calls 1, 2, and 3.

An algorithm is always written as a sequence of update equations. But some algorithms might have a
directed graph that may be written as a sequence (with all edges pointing forward) in more than one way.
These algorithms can be implemented as a sequence of oracle calls in more than one way. For illustration,

13

1

23

4

Fig. 5. Directed graph representing dependency of oracle calls in algorithm 6.3.

consider algorithms 6.3 and 6.4. At each iteration, the oracle calls of algorithms 6.3 and 6.4 are identical:
that is, calls to oracles ∇f , ∇g, ∇h, and proxtf are identical. The only difference is that the oracle calls
∇g and ∇h are swapped in the oracle sequence at each iteration. Notice that the state-space realizations
of these algorithms still have the same transfer function (after swapping the second and third columns and
rows). This is consistent with the fact that algorithms 6.3 and 6.4 share the same directed graph of oracle
calls as figure 5.

We know of no practical optimization algorithm like this. However, were one to be discovered, we would
suggest an expanded definition of oracle equivalence: two algorithms are oracle-equivalent if there exists a
way of writing each algorithm as a sequence of updates so that both algorithms have the same sequence
of oracle calls. We can still identify algorithms that are oracle-equivalent in this expanded sense using the
transfer function.

The oracle calls in an algorithm at each iteration are always written in sequential form. This sequential
form is lost in the state-space realization of the algorithm. However, the order (dependency) of oracle calls
is encoded in the D matrix of the state-space realization. In this sense, the D matrix is closely related to the
adjacency matrix of the directed graph. We have Dij 6= 0 if and only if oracle call i depends on the results
of oracle call j at each iteration. For example, the D matrix in the state-space realization of algorithm 6.3 is
provided below. 

0 0 0 0
−t 0 0 0
−t 0 0 0
−2t −t −t 0


In light of this discussion, we can strengthen proposition 6.1 to proposition 6.2.

Proposition 6.2. An algorithm and any of its cyclic permutations are shift-equivalent; further, if they
share the same D matrix in their state-space realizations, they are also oracle-equivalent.

If an algorithm contains m update equations and n oracle calls at each iteration (m ≥ n), there are m possible
cyclic permutations on the update equations. According to the D matrix in the state-space realization, we
can group the m cyclic permutations into n distinct equivalent classes. Algorithms within each equivalence
class are oracle-equivalent and shift-equivalent, while algorithms in different equivalent classes are only shift-
equivalent. The n distinct equivalence classes correspond to the n cyclic permutations of the original order
of oracle calls (n).

6.2. Characterization of cyclic permutation.
In the remainder of this paper, let us restrict our attention to algorithms for which a (cyclic) permutation

of the algorithm changes the update order of oracle calls within one iteration, or in other words, changes the
D matrix in the state-space realization. In this way, we call algorithm B = PπA a permutation of algorithm
A if B performs the update equations of A in a different order such that the update order of oracle calls of
B is π at each iteration.

Suppose A has state-space realization (A,B,C,D), and B = PπA where π = (j + 1, . . . , n, 1, . . . , j) for
1 < j < n is a cyclic permutation of (n). We will show how to recognize this relationship between the
algorithms by considering their transfer functions. Partition the oracle calls into two parts, (1, . . . , j) and
(j + 1, . . . , n), and partition the input and output sequences in the same way: ū1, ū2 for inputs and ȳ1, ȳ2

for outputs. The state-space realization LA and transfer function ĤA(z) can also be partitioned accordingly

14

as

(6.1) LA =

 A B1 B2

C1 D11 D12

C2 D21 D22

 ,
ĤA(z) =

[
C1(zI −A)−1B1 +D11 C1(zI −A)−1B2 +D12

C2(zI −A)−1B1 +D21 C2(zI −A)−1B2 +D22

]
=

[
Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

]
.

The state-space realization corresponds to the state update equations

(6.2)

xk+1 = Axk +B1ū
k
1 +B2ū

k
2

ȳk1 = C1x
k +D11ū

k
1 +D12ū

k
2

ȳk2 = C2x
k +D21ū

k
1 +D22ū

k
2 .

Now we can say how the transfer function of an algorithm is related to that of its cyclic permutation.

Proposition 6.3. Assume D12 = 0. Then B = PπA if and only if the transfer function of B satisfies

(6.3) ĤB(z) =

[
Ĥ11(z) zĤ12(z)

Ĥ21(z)/z Ĥ22(z)

]
.

Proof. Sufficiency. We will derive the state-space realization of B:

(6.4)


A B1 0 B2

0 0 I 0
C1A C1B1 D11 C1B2

C2 D21 0 D22

 .
To verify this realization is correct, we can write the system equations of this state-space realization as

(6.5)

xk+1 = Axk +B1ū
k
1 +B2ū

k
2

ūk+1
1 = ūk+1

1

ȳk+1
1 = C1Ax

k + C1B1ū
k
1 +D11ū

k+1
1 + C1B2ū

k
2

ȳk2 = C2x
k +D21ū

k
1 +D12ū

k
2 .

Note that equations (6.5) are the results of equations (6.2) after applying permutation π. As we perform
cyclic permutation π, within each iteration, the update order of the oracles is shifted as (j+1, . . . , n, 1, . . . , j),
indicating oracles (j+1, . . . , n) are updated before (1, . . . , j). Further, the input and output sequences within
one iteration at time step k become (ūk2 , ū

k+1
1) and (ȳk2 , ȳ

k+1
1). From the state-space realization, we may

compute the transfer function as

(6.6) ĤB(z) =

[
C1(zI −A)−1B1 +D11 zC1(zI −A)−1B2

C2(zI −A)−1B1/z +D21/z C2(zI −A)−1B2 +D22

]
=

[
Ĥ11(z) zĤ12(z)

Ĥ21(z)/z Ĥ22(z)

]
.

To arrive at (6.6), we have used the fact that D12 = 0 by assumption, and

(6.7)

(
zI −

[
A B1

0 0

])−1
=

[
(zI −A)−1 1

z (zI −A)−1B1

0 1
z I

]
.

Necessity is provided by proposition 5.1. Equivalent algorithms must have identical transfer functions.
Thus, if we find an algorithm and its transfer function is the same as (6.3), it must be equivalent to B.

We have assumed that D12 = 0 for algorithm A. This assumption is quite weak. In fact, D12 must be 0
for any algorithm A that can be represented as a causal linear time-invariant system. Here, causal means that
we can implement the algorithm by calling state update equations sequentially. To see this, suppose the state

15

update equations have been arranged in this order, and use (3.5) to write down the matrix representation of
the infinite dimensional map H that maps input u to output y corresponding to A as (6.8):

(6.8) H =



D11 D12 0 0 0 0 · · ·
D21 D22 0 0 0 0 · · ·
C1B1 C1B2 D11 D12 0 0 · · ·
C2B1 C2B2 D21 D22 0 0 · · ·
C1AB1 C1AB2 C1B1 C1B2 D11 D12 · · ·
C2AB1 C2AB2 C2B1 C2B2 D21 D22 · · ·

...
. . .

. . .
. . .

. . .
. . .

. . .


.

We can see that map H is (block) Toeplitz. Further, if algorithm A is causal, map H must be lower-triangular,
and so D12 must be 0.

By causality, at each iteration the former oracle calls must be independent with the latter oracle calls
while the latter calls can depend on the former calls. This indicates that there are no directed cycles in
the directed graph representing oracle calls at each iteration for any causal algorithm. In other words, the
graph is a directed acyclic graph (DAG). This is consistent with the fact that any causal algorithm has a
lower-triangular D matrix (lower-triangular adjacency matrix of the directed graph).

Note that algorithms are not always written with state update equations ordered causally: for example,
the state-space realization (6.4) has a non-zero D12 block. However, we may reorder these equations so that
each equation depends only on previously-computed quantities to reveal that the iteration is causal; after
this rearrangement, the new D12 block is 0. We discuss permutations further in appendix C.

The fixed points of an algorithm and its cyclic permutations are the same up to a permutation. Suppose al-
gorithm A : X → X with state-space realization of the form (6.1) converges to a fixed point (ȳ?1 , ȳ

?
2 , ū

?
1, ū

?
2, x

?).
Partition the oracle calls into two (nonlinear) oracles φ1 and φ2. Formally, write the update equations as

(6.9)

x? = Ax? +B1ū
?
1 +B2ū

?
2

ȳ?1 = C1x
? +D11ū

?
1 +D12ū

?
2

ȳ?2 = C2x
? +D21ū

?
1 +D22ū

?
2

u?1 = φ1(y?1)

u?2 = φ2(y?2).

Suppose the cyclic permutation π swaps the first and second set of oracle calls. Then the cyclic permutation
B = PπA converges to fixed point (ȳ?2 , ȳ

?
1 , ū

?
2, ū

?
1, x

?). To verify this, since D12 = 0, we have

(6.10)

x? = Ax? +B1ū
?
1 +B2ū

?
2

ū?1 = ū?1

ȳ?1 = C1Ax
? + C1B1ū

?
1 +D11ū

?
1 + C1B2ū

?
2 = C1x

? +D11ū
?
1

ȳ?2 = C2x
? +D21ū

?
1 +D12ū

?
2

u?1 = φ1(y?1)

u?2 = φ2(y?2).

6.3. Applications: proof of shift equivalence.
algorithm 2.5 and algorithm 2.6. Now, we can revisit algorithms 2.5 and 2.6 in the third motivating

example and show that they are permutations of each other and they are shift-equivalent. The transfer
function of algorithm 2.5 is

Ĥ5(z) =


0 0 0 1 0
0 0 0 0 1
0 0 1 −1 1
0 0 1 0 0
0 0 −1 2 0

 =

[
− 1
z−1

1
z−1

2z−1
z−1 − 1

z−1

]
.

16

The transfer functions of algorithm 2.6 is

Ĥ6(z) =


1 −1 0 1
0 0 1 0
1 −1 0 1
−1 2 0 0

 =

[
− 1
z−1

z
z−1

2z−1
z(z−1) − 1

z−1

]
.

From propositions 6.1 and 6.3, we know that they are (cyclic) permutation and they are shift-equivalent.
algorithm 6.1 and algorithm 6.2. Here we revisit algorithms 6.1 and 6.2 at the beginning of this chapter

and show their relations with algorithm 2.5. The transfer function of algorithm 6.1 is

Ĥ8(z) =


0 0 0 1 0
0 0 0 0 1
−1 0 1 0 1
−1 0 1 0 1
2 0 −1 0 0

 =

[
− 1
z−1

z
z−1

2z−1
z(z−1) − 1

z−1

]
.

The transfer function of algorithm 6.2 is

Ĥ9(z) =


0 0 0 1 0
0 0 0 0 1
−1 1 1 0 0
−1 1 1 0 0
1 −1 −1 2 0

 =

[
− 1
z−1

1
z−1

2z−1
z−1 − 1

z−1

]
.

From Propositions 6.1 and 6.3, we know that algorithms 2.5 and 6.1 are (cyclic) permutation and they are
shift-equivalent. From Proposition 5.1, we know algorithms 2.5 and 6.2 are oracle-equivalent, thus they are
also shift-equivalent.

Algorithm 6.5 Douglas-Rachford splitting

for k = 0, 1, 2, . . . do
xk+1
1 = proxtf (xk3)

xk+1
2 = proxtg(2x

k+1
1 − xk3)

xk+1
3 = xk3 + xk+1

2 − xk+1
1

end for

Algorithm 6.6 ADMM

for k = 0, 1, 2, . . . do

ξk+1
1 = argminξ{g(ξ) + ρ

2

∥∥Aξ +Bξk2 − c+ ξk3
∥∥2}

ξk+1
2 = argminξ{f(ξ) + ρ

2

∥∥Aξk+1
1 +Bξ − c+ ξk3

∥∥2}
ξk+1
3 = ξk3 +Aξk+1

1 +Bξk+1
2 − c

end for

Douglas-Rachford splitting and ADMM. Consider a last example of algorithm permutation: Douglas-
Rachford splitting (DR) (algorithm 6.5 [11,12]) and the alternating direction method of multipliers (ADMM)
(algorithm 6.6 [29, §8]). Suppose that A = I, B = −I, and c = 0 in (3.1). Then both DR and ADMM solve
problem (3.1) [4, 19, 34], and the update equations of ADMM can be simplified as algorithm 6.7. Further,

Algorithm 6.7 Simplified ADMM

for k = 0, 1, 2, . . . do
ξk+1
1 = prox 1

ρ g
(ξk2 − ξk3)

ξk+1
2 = prox 1

ρ f
(ξk+1

1 + ξk3)

ξk+1
3 = ξk3 + ξk+1

1 − ξk+1
2

end for

we assume ρ = 1/t in ADMM. We will compute the transfer function of both algorithms using proxtf and
proxtg as the oracles. The transfer function of DR is

(6.11) Ĥ10(z) =


0 0 0 1 0
0 0 0 0 1
0 0 1 −1 1
0 0 1 0 0
0 0 −1 2 0

 =

[
− 1
z−1

1
z−1

2z−1
z−1 − 1

z−1

]

17

and the transfer function of ADMM is

(6.12) Ĥ11(z) =


0 0 0 0 1
0 0 0 1 0
0 0 1 −1 1
0 0 1 0 1
0 1 −1 0 0

 =

[
− 1
z−1

z
z−1

2z−1
z(z−1) − 1

z−1

]
.

From propositions 6.1 and 6.3, we know that Douglas-Rachford splitting and ADMM (with ρ = 1/t) are
(cyclic) permutation and they are shift-equivalent. In fact, it is also possible to write the state-space realiza-
tion for each algorithm using the gradient (or subgradient) of f and g as the oracle. The transfer functions
depend on the choice of oracle, but in either case, we obtain the same results: the algorithms are (cyclic)
permutation and they are shift-equivalent. We discuss the details further in appendix D.

7. Algorithm repetition. In previous sections, we define equivalence between algorithms with the
same number of oracle calls in each iteration. This section considers how to identify relations between two
algorithms when the number of oracles in each iteration differs. For example, we would like to detect when
one algorithm consists of the another, simpler algorithm, repeated twice or more, possibly with changes to
variables or shifts that obscure the relation.

Consider an algorithm A. Given a problem and an initialization, the algorithm will generate state
sequence (xkA)k≥0, input sequence (ukA)k≥0, and output sequence (ykA)k≥0, respectively. Specifically, the
update at time step k can be written as xk+1

A = A(xkA). Suppose we have another algorithm B such that
B = A2: repeating A twice gives the same result as B. We call B a repetition of A.

Just as in the previous sections, algorithm repetition can be characterized by the transfer function.

Proposition 7.1. Suppose A has state-space realization (A,B,C,D). Then B = A2 if and only if its
transfer function has the form

(7.1)

[
C(zI −A2)−1AB +D C(zI −A2)−1B

CA(zI −A2)−1AB + CB CA(zI −A2)−1B +D

]
.

Proof. Sufficiency. The update equations of B can be written as

(7.2)

xk1 = AxkB +Buk1

yk1 = CxkB +Duk1

xk+1
B = Axk1 +Buk2

yk2 = Cxk1 +Duk2 ,

where xk1 is an intermediate state. After eliminating the intermediate state xk1 , we arrive at a new system of
update equations:

(7.3)

xk+1
B = A2xkB +ABuk1 +Buk2

yk1 = CxkB +Duk1

yk2 = CAxkB + CBuk1 +Duk2 .

The corresponding state-space realization has transfer function

(7.4)

 A2 AB B
C D 0
CA CB D

 =

[
C(zI −A2)−1AB +D C(zI −A2)−1B

CA(zI −A2)−1AB + CB CA(zI −A2)−1B +D

]
.

Necessity is provided by proposition 5.1 since the transfer function uniquely characterizes an algorithm.

Algorithm 7.1 Gradient method

for k = 0, 1, 2, . . . do
xk+1 = xk − t∇f(xk)

end for

Algorithm 7.2 Repetition of gradient method

for k = 0, 1, 2, . . . do
ξk+1
2 = ξk1 − t∇f(ξk1)
ξk+1
1 = ξk+1

2 − t∇f(ξk+1
2)

end for

18

One example of repetition consists the gradient method algorithm 7.1 and its repetition algorithm 7.2.
Note that algorithm 2.4 is algorithm 7.1 with a specific parameter realization. The transfer functions of each
algorithm are computed as Ĥ12(z) and Ĥ13(z) respectively:

Ĥ12(z) =

[
1 −t
1 0

]
= − t

z − 1
, Ĥ13(z) =

 1 −t −t
1 0 0
1 −t 0

 =

[
− t
z−1 − t

z−1
− tz
z−1 − t

z−1

]
.

Proposition 7.1 reveals how the transfer function changes when an algorithm is repeated twice. In fact,
we can identify an algorithm that has been repeated arbitrarily many times. Suppose algorithm C is A
repeated n ≥ 1 times: C = An.

Proposition 7.2. Suppose A has state-space realization (A,B,C,D). Then C = An for n ≥ 1 if and
only if C has a transfer function given by (7.6).

Proof. Sufficiency. We can represent C with state-space realization

(7.5)


An An−1B AB B
C D 0 0 . . . 0
CA CB D 0 . . . 0

...
...

. . .
. . .

. . .
...

CAn−1 CAn−2B CB D

 .

Note that (zI−An)−1Al = Al(zI−An)−1 for any n and l. Let C̃ = C(zI−An)−1, and compute the transfer
function of C:

(7.6)


C̃An−1B +D C̃An−2B C̃AB C̃B

C̃AnB + CB C̃An−1B +D C̃A2B C̃AB
...

...
. . .

. . .
...

...

C̃A2n−2B + CAn−2B C̃A2n−3B + CAn−3B C̃AnB + CB C̃An−1B +D

 .
Necessity is provided by proposition 5.1, just as in the proof of proposition 7.1.

Remark. Proposition 7.1 is a special case of proposition 7.2 when n = 2. The dimension of transfer
function of C is n times the dimension of transfer function of A. Similarly, the dimension of input and output

of C is n times the dimension of the input and output of A. At time step k, we have ykC = (ynkA , . . . , y
(n+1)k−1
A)

and ukC = (unkA , . . . , u
(n+1)k−1
A).

Just as for oracle equivalence and cyclic permutations, the fixed points of an algorithm and its repetitions
are related, as shown in proposition 7.3.

Proposition 7.3. If algorithm A converges to a fixed point (y?, u?, x?), then its repetition An for n ≥ 1
converges to fixed point (y′, u′, x?), with y′ = y?

⊗
1
n and u′ = u?

⊗
1
n. Here

⊗
is the Kronecker product

and 1
n is an n dimensional vector whose entries are all ones.

Detailed proof is provided in appendix E. Since An repeats A n times, the input and output of the fixed
point of An are obtained by repeating the input and output on the corresponding fixed point of A n times.

Repetition gives us many more ways to combine algorithms into complex and unwieldly (but conver-
gent) new methods. We can repeat a sequence of iterations from different algorithms and regard them
together as a new algorithm. Suppose we choose n algorithms A1, . . . ,An with state-space realizations
(A1, B1, C1, D1), . . . , (An, Bn, Cn, Dn) and run one iteration of each as a single iteration of our new monster
algorithm. For simplicity, suppose the state-space realization matrices Ai, Bi, Ci, Di for each algorithm Ai
have the same dimensions as all others i = 1, . . . , n. (Otherwise the result is harder to write down, but still
straightforward to compute.) Then we can represent the resulting monster algorithm with transfer function

(7.7)



∏1
i=nAi

∏2
i=nAiB1 AnBn−1 Bn

C1 D1 0 0 . . . 0
C2A1 C2B1 D2 0 . . . 0

...
...

. . .
. . .

. . .
...

Cn
∏1
i=n−1Ai Cn

∏2
i=n−1AiB1 CnBn−1 Dn

 .

19

Hence one easy way to develop new publishable optimization algorithms — until the present work — has
been to combine existing algorithms into a new monster algorithm with similar convergence properties but
new exciting interpretations. Using our software, it is easy for reviewers to detect such algorithm surgery
by searching over all pairs (or trios, etc) of known algorithms. This combinatorial search is still not too
expensive, since the list of known algorithms is still rather small, and the number of algorithms that makes
up a monster algorithm is limited by the number of oracle calls at each iteration of the monster algorithm.

8. Algorithm conjugation. In this section, we introduce one last algorithm transformation, conjuga-
tion, which alters the oracle calls but results in algorithms that still bear a family resemblance.

Algorithm conjugation is a natural operation for convex optimization. For convex optimization, some
oracles are closely related to others: for example, when f?(y) = supx{xT y − f(x)} is the Fenchel conjugate
of f [13, §3],

• (∂f)−1 = ∂f?, and
• Moreau’s identity. I − proxf = proxf∗

[28; 29, §2]. We can rewrite any algorithm in terms of different, also easily computable, oracles using these
identities. Consider a simple example: we will obfuscate the proximal gradient method (algorithm 8.1
[2, §10; 3]) by rewriting it in terms of the conjugate of the original oracle proxg, using Moreau’s identity, as
algorithm 8.2 [22].

Algorithm 8.1 Proximal gradient method

for k = 0, 1, 2, . . . do
xk+1 = proxtg(x

k − t∇f(xk))
end for

Algorithm 8.2 Conjugate of proximal gradient
method

for k = 0, 1, 2, . . . do
ξk+1 = ξk− t∇f(ξk)− tprox 1

t g
?(1
t (ξ

k− t∇f(ξk)))
end for

The transfer function of the algorithm changes when we rewrite the algorithm to call a different oracle,
such as calling proxf? instead of proxf . Yet the sequence of states is preserved! Similarly, when we rewrite an
algorithm to call ∂f? instead of ∂f , the resulting algorithm is related to the original algorithm by swapping
the input and output sequences. We say that algorithm B = CκA is a conjugate of algorithm A if algorithm
B results from rewriting algorithm A to use the conjugates of the oracles in set κ ⊆ [n], where [n] = {1, . . . , n}
is the set of oracle indices for algorithm A. Interestingly, conjugation preserves the state sequence but not
the oracle sequence. We will also call two algorithms conjugates if they are oracle-equivalent to a conjugate
pair. Our goal in this section is to describe how to identify conjugate algorithms.

For simplicity in the remainder of this section, we suppose that all oracles are (sub)gradients. To
detect equivalence of algorithms involving prox using methods presented here, we may write the state-space
realization of the algorithm in terms of (sub)gradients:

u = proxf (y) ⇐⇒ y ∈ u+ ∂f(u).

In fact, our software uses this method to check algorithm conjugation.
Restricting to (sub)gradients, we see from the identity (∂f)−1 = ∂f? that algorithm conjugation swaps

the input and output of an algorithm: the algorithm after conjugation takes the output of the original
algorithm as input and produces the input of the original one as output. As shown in figure 6, the input
sequence of the algorithm after conjugation is the original output sequence and the output sequence in the
algorithm after conjugation is the original input sequence.

First, let’s introduce a bit of standard notation. Suppose an algorithm A contains n oracle calls in
each iteration. The cardinality of a subset κ ⊆ [n] is |κ| and the complement is κ̄ = [n] \ κ. For any
matrix M ∈ Rn×n, M [κ, ν] is the sub-matrix of M whose rows and columns are indexed by κ and ν ⊆ [n],
respectively. We write M [κ, κ] as M [κ] for simplicity. For i ∈ [n], the conjugation operator Ci conjugates
oracle i: it replaces the ith oracle by its inverse. The operator Cκ conjugates all oracles in the set κ ⊆ [n] to
produce the conjugate algorithm CκA.

Proposition 8.1. Suppose A has state-space realization (A,B,C,D) and transfer function Ĥ(z), and
D[κ] is invertible. Then B = CκA if and only if the transfer function Ĥ ′(z) of B satisfies

(8.1) PĤ ′(z)PT =

[
Ĥ[κ]−1(z) −Ĥ[κ]−1(z)Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z)Ĥ[κ]−1(z) Ĥ[κ̄](z)− Ĥ[κ̄, κ](z)Ĥ[κ]−1(z)Ĥ[κ, κ̄](z)

]
.

20

L
xk−1. . . xk

φ yk−1
uk−1

L
xk+1

φ ykuk

L
. . .

φ yk+1
uk+1

L̃
x̃k−1. . . x̃k

φ−1 ỹk−1
ũk−1

L̃
x̃k+1

φ−1 ỹkũk

L̃ . . .

φ−1 ỹk+1
ũk+1

Fig. 6. Unrolled block-diagram representation of algorithm conjugation. Here φ̃ = φ−1.

Here P is a permutation matrix that swaps rows and columns so indices in κ come first:

(8.2) PĤ(z)PT =

[
Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

]
.

Proof. Sufficiency. Without loss of generality, suppose the oracles κ = {1, . . . , |κ|} appear first,

Ĥ(z) =

[
Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

]
, D =

[
D[κ] D[κ, κ̄]
D[κ̄, κ] D[κ̄]

]
,

and consequently the permutation matrix P is the identity. We obtain the desired results from (3.14) by
setting D11 = D[κ], Ĥ11(z) = Ĥ[κ](z), Ĥ12(z) = Ĥ[κ, κ̄](z), Ĥ21(z) = Ĥ[κ̄, κ](z), and Ĥ22(z) = Ĥ[κ̄](z).

Necessity is provided by proposition 5.1 as the transfer function uniquely characterizes oracle-equivalent
algorithms.

From proposition 8.1, the transfer function Ĥ(z) of algorithm A is partially inverted when the algorithm
is conjugated by Cκ. The new transfer function Ĥ ′(z) results from applying the Sweep operator with indices
κ to Ĥ(z) [15, 31]. If we consider the input and output sequences for each oracle separately, for any oracle
in κ, the input sequence corresponding to CκA is the original output sequence in A and the output sequence
corresponding to CκA is the original input sequence in A. The input and output sequences of oracles in [n]\κ
remain unchanged in the new algorithm CκA.

Proposition 8.1 assumes that D[κ] is invertible. In fact, B = CκA is a causal algorithm if and only if
D[κ] is invertible. We need not condition on causality in the proposition, since any algorithm that can be
written down as a set of update equations is necessarily causal.

Now we consider two special cases: conjugating 1) a single oracle, or 2) all of the oracles.

Corollary 8.2. Consider algorithm A with state-space realization (A,B,C,D) and transfer function
Ĥ(z) ∈ Rn×n.

(a) Suppose Dkk 6= 0 for any k ∈ [n]. Then the new transfer function Ĥ ′(z) of CkA can be expressed
entrywise as

(8.3) h′ij(z) =


1/hkk(z) i = k, j = k

−hkj(z)/hkk(z) i = k, j 6= k

hik(z)/hkk(z) i 6= k, j = k

hij(z)− hik(z)hkj(z)/hkk(z) i 6= k, j 6= k,

as hij(z) and h′ij(z) 1 ≤ i, j ≤ n denote the entries of Ĥ(z) and Ĥ ′(z) respectively.

(b) Suppose D is invertible. Then the transfer function Ĥ ′(z) of C[n]A satisfies Ĥ ′(z) = Ĥ−1(z).

Proximal gradient. Now we can revisit algorithms 8.1 and 8.2 and show that they are conjugate. The
transfer functions of algorithms 8.1 and 8.2 are computed as Ĥ14(z) and Ĥ15(z) below. Note that the state-
space realizations are written in terms of (sub)gradients. From corollary 8.2, they are conjugate with respect
to the second oracle.

Ĥ14(z) =

[
− t
z−1 − t

z−1
− tz
z−1 − tz

z−1

]
, Ĥ15(z) =

[
0 1

z
−1 − z−1tz

]

21

Algorithm 8.3 Chambolle-Pock method

for k = 0, 1, 2, . . . do
xk+1
1 = proxτf (xk1 − τxk2)

xk+1
2 = proxσg?(xk2 + σ(2xk+1

1 − xk1))
end for

DR and Chambolle-Pock. Another important example is the relation between DR (algorithm 6.5) and
the primal-dual optimization method proposed by Chambolle and Pock (algorithm 8.3 [8; 24]). Note that
algorithm 6.5 is parameterized by parameter t and algorithm 8.3 is parameterized by parameters τ and σ.
The transfer functions of algorithms 6.5 and 8.3 are provided below as Ĥ10(z) and Ĥ16(z) respectively. By
corollary 8.2, we know that they are conjugate with respect to the second oracle if τ = t and σ = 1/t. So
DR and the Chambolle-Pock method (when the parameter value τ = t and σ = 1/t) are conjugate. We will
say more about how to discover the correct parameter restriction in section 9.

Ĥ10(z) =

[
− tz
z−1 − t

z−1
t(1−2z)
z−1 − tz

z−1

]
, Ĥ16(z) =

[
− τz(z−1)

2στz−στ+z2−2z+1
στz

2στz−στ+z2−2z+1
στz(1−2z)

2στz−στ+z2−2z+1 − σz(z−1)
2στz−στ+z2−2z+1

]
τ=t−−−→
σ= 1

t

[
t(1−z)
z

1
z

1−2z
z

1−z
tz

]
The fixed points of an algorithm and its conjugate are related as stated in proposition 8.3.

Proposition 8.3. If an algorithm A converges to a fixed point (y[κ]?, y[κ̄]?, u[κ]?, u[κ̄]?, x?), then its
conjugate B = CκA converges to fixed point (u[κ]?, y[κ̄]?, y[κ]?, u[κ̄]?, x?).

For simplicity, detailed proof is provided in appendix F. Intuitively, as we invert the input-output map of
u[κ] and y[κ], the corresponding parts in the fixed point are also inverted.

Proposition 8.4. Suppose algorithm A has state-space realization (A,B,C,D), where Dii 6= 0 and
Djj 6= 0. Then CiCjA = CjCiA = C{ij}A.

Proof. By corollary 8.2, if Dii 6= 0 and Djj 6= 0, then CiA and CjA are causal. Note that entries above
diagonal of D are all zero because A is causal. Thus, det(D[{ij}]) = DiiDjj 6= 0 and C{ij}A is causal. The
commutative property of the Sweep operator gives the result CiCjA = CjCiA = C{ij}A [15, 31].

Proposition 8.4 states that conjugation of different oracles commutes. This justifies our notation Cκ for
set κ, as the order of the oracles in κ is irrelevant. Further, conjugation and cyclic permutation also commute;
see proposition G.1 and proof in appendix G.

DR and ADMM. We showed in subsection 6.3 that the DR (algorithm 6.5) and ADMM (algorithm
6.6) are related by permutation with a certain choice of parameters. Here, we show that they are related
by permutation and conjugation (in either order, as they commute), with a different choice of parameters:
A = I,B = I, c = 0, ρ = t for ADMM. The transfer function of this special parameterization of ADMM
is shown as Ĥ17(z). Relations between DR and ADMM can be illustrated as follows. Recall Ĥ10(z) is the
transfer function of DR. Here we can observe that different choices of parameters of algorithms can lead to
different relations between algorithms.

Ĥ17(z) =

[
− z
t(z−1)

2z−1
tz(z−1)

z
t(z−1) − z

t(z−1)

]
C12−−→

[
− tz
z−1

t(1−2z)
z(z−1)

− tz
z−1 − tz

z−1

]
P21−−→

[
− tz
z−1 − t

z−1
t(1−2z)
z−1 − tz

z−1

]
= Ĥ10(z)

The commutative property is important to identify relations between algorithms efficiently. For example,
suppose we would like to identify the relations between algorithms 6.5 and 6.6, with transfer functions
Ĥ10(z) and Ĥ17(z). We can first perform conjugation and next permutation on algorithm 6.5, and then test
equivalence between the resulting algorithm and algorithm 6.6. We need not try permutation followed by
conjugation; as these commute, both orders lead to the same transfer function.

We have already shown several relations between DR (algorithm 6.5), ADMM (algorithm 6.6), and the
Chambolle-Pock method (algorithm 8.3) using conjugation and permutation. We represent these relations
in figure 7. The figure relates 8 different algorithms: Starting from DR, since it contains 2 oracles, there
are 2 possible different algorithms by permutation. From the state-space realization, we can conjugate both
oracles, which yields 4 different algorithms by conjugation of different oracles. Therefore, in total there are
2 × 4 = 8 possible different algorithms, including both ADMM and Chambolle-Pock. In the figure, C1 and

22

C2 denote conjugation with respect to the first and second oracles respectively, P denotes permutation, and
we can move between algorithms by applying the transformation on each edge, in either direction, as each
transformation is an involution.

Fig. 7. Connections between DR, ADMM, and Chambolle-Pock method.

9. Linnaeus. We have presented a framework for detecting equivalence between iterative algorithms for
continuous optimization. In this section, we introduce a software package called Linnaeus that implements
these ideas. This package can be used by researchers (or peer reviewers) who wish to understand the
novelty of new algorithmic ideas and connections to existing algorithms. The input is an algorithm described
in user-friendly syntax with variables, parameters, functions, oracles, and update equations. The system
will automatically translate the input algorithm into a canonical form (the transfer function) and use the
canonical form to identify whether the algorithm is equivalent to any reference algorithm, possibly after
transformations such as permutation, conjugation, or repetition. Further, the software can also serve as a
search engine, which will identify connections from the input algorithm to existing algorithms in the literature
that appear in Linnaeus’s algorithm library.

9.1. Illustrative examples. We use Linnaeus to identify the relations between algorithms presented
previously in the paper. These examples demonstrate the power and simplicity of Linnaeus. Code for these
examples can be found at https://github.com/QCGroup/linnaeus.

algorithm 2.1 and algorithm 2.2. The following code identifies that algorithms 2.1 and 2.2 are oracle-
equivalent. We input algorithms 2.1 and 2.2 with variables, oracles, and update equations, and parse them
into state-space realizations. Then we check oracle equivalence using the function is equivalent. The
system returns True, consistent with our analytical results in sections 2 and 5.

define Algorithm 2.1

algo1 = Algorithm("Algorithm 2.1")

add oracle gradient of f to Algorithm 2.1

gradf = algo1.add_oracle("gradf")

add variables x1, x2, and x3 to Algorithm 2.1

x1, x2, x3 = algo1.add_var("x1", "x2", "x3")

add update equations

x3 <- 2x1 - x2

algo1.add_update(x3, 2*x1 - x2)

x2 <- x1

algo1.add_update(x2, x1)

x1 <- x3 - 1/10*gradf(x3)

https://github.com/QCGroup/linnaeus

23

algo1.add_update(x1, x3 - 1/10*gradf(x3))

parse Algorithm 2.1, translate it into canonical form

algo1.parse()

--

Parse Algorithm 2.1.

State-space realization:x+1x+2
x+3

 =

2 −1 0
1 0 0
2 −1 0

x1x2
x3

+

−0.1
0
0

 [gradf (y0)
]

[
y0
]

=
[
2 −1 0

] x1x2
x3

+
[
0
] [

gradf (y0)
]

--

algo2 = Algorithm("Algorithm 2.2")

xi1, xi2, xi3 = algo2.add_var("xi1", "xi2", "xi3")

gradf = algo2.add_oracle("gradf")

xi3 <- xi1

algo2.add_update(xi3, xi1)

xi1 <- xi1 - xi2 - 1/5*gradf(xi1)

algo2.add_update(xi1, xi1 - xi2 - 1/5*gradf(xi3))

xi2 <- xi2 + 1/10*gradf(xi3)

algo2.add_update(xi2, xi2 + 1/10*gradf(xi3))

algo2.parse()

--

Parse Algorithm 2.2.

State-space realization:ξ+1ξ+2
ξ+3

 =

1 −1 0
0 1 0
1 0 0

ξ1ξ2
ξ3

+

−0.2
0.1
0

 [gradf (y0)
]

[
y0
]

=
[
1 0 0

] ξ1ξ2
ξ3

+
[
0
] [

gradf (y0)
]

--

check oracle equivalence

lin.is_equivalent(algo1, algo2, verbose = True)

--

Algorithm 2.1 is equivalent to Algorithm 2.2.

--

True

algorithm 2.5 and algorithm 2.6. The second example identifies that algorithms 2.5 and 2.6 are shift-
equivalent. We input and parse the algorithms into state-space realizations and then check shift equivalence
(cyclic permutation) using the function is permutation. The system returns True, consistent with results
in sections 2 and 6.

algo5 = Algorithm("Algorithm 2.5")

x1, x2, x3 = algo5.add_var("x1", "x2", "x3")

proxf, proxg = algo5.add_oracle("proxf", "proxg")

24

x1 <- proxf(x3)

algo5.add_update(x1, proxf(x3))

x2 <- proxg(2x1 - x3)

algo5.add_update(x2, proxg(2*x1 - x3))

x3 <- x3 + x2 - x1

algo5.add_update(x3, x3 + x2 - x1)

algo5.parse()

--

Parse Algorithm 2.5.

State-space realization:x+1x+2
x+3

 =

0 0 0
0 0 0
0 0 1

x1x2
x3

+

 1 0
0 1
−1 1

[proxf (y0)
proxg (y1)

]
[
y0
y1

]
=

[
0 0 1
0 0 −1

]x1x2
x3

+

[
0 0
2 0

] [
proxf (y0)
proxg (y1)

]
--

algo4 = Algorithm("Algorithm 2.6")

xi1, xi2 = algo4.add_var("xi1", "xi2")

proxf, proxg = algo4.add_oracle("proxf", "proxg")

xi1 <- proxg(-xi1 + 2xi2) + xi1 - xi2

algo4.add_update(xi1, proxg(-xi1 + 2*xi2) + xi1 - xi2)

xi2 <- proxf(xi1)

algo4.add_update(xi2, proxf(xi1))

algo4.parse()

--

Parse Algorithm 2.6.

State-space realization:[
ξ+1
ξ+2

]
=

[
1 −1
0 0

] [
ξ1
ξ2

]
+

[
1 0
0 1

] [
proxg (y0)
proxf (y1)

]
[
y0
y1

]
=

[
−1 2
1 −1

] [
ξ1
ξ2

]
+

[
0 0
1 0

] [
proxg (y0)
proxf (y1)

]
--

check cyclic permutation (shift equivalence)

lin.is_permutation(algo5, algo6, verbose = True)

--

Algorithm 2.5 is a permutation of Algorithm 2.6.

--

True

DR and ADMM. The third illustrative example shows that DR and ADMM are related by permutation
and conjugation, as we saw in section 8. Further, Linnaeus can even reveal the specific parameter choice
required for the relation to hold. Just as in section 8, suppose both DR and ADMM solve problem (3.1) with
A = I, B = I, and c = 0. We input and parse DR and ADMM. To detect the relations, we use function
test conjugate permutation to check conjugation and permutation between DR and ADMM. The results
are the same as section 8.

25

DR = Algorithm("Douglas-Rachford splitting")

x1, x2, x3 = DR.add_var("x1", "x2", "x3")

t = DR.add_parameter("t")

x1 <- prox_tf(x3)

DR.add_update(x1, lin.prox(f, t)(x3))

x2 <- prox_tg(2x1 - x3)

DR.add_update(x2, lin.prox(g, t)(2*x1 - x3))

x3 <- x3 + x2 - x1

DR.add_update(x3, x3 + x2 - x1)

DR.parse()

--

Parse Douglas-Rachford splitting.

State-space realization:x+1x+2
x+3

 =

0 0 1
0 0 1
0 0 1

x1x2
x3

+

 −t 0
−2t −t
−t −t

[d
dy0

f(y0)
d
dy1

g(y1)

]
[
y0
y1

]
=

[
0 0 1
0 0 1

]x1x2
x3

+

[
−t 0
−2t −t

] [d
dy0

f(y0)
d
dy1

g(y1)

]
--

ADMM = Algorithm("ADMM")

f, g = ADMM.add_function("f", "g")

rho = ADMM.add_parameter("rho")

xi1, xi2, xi3 = ADMM.add_var("xi1", "xi2", "xi3")

xi1 <- argmin(x1, g^*(xi1) + 1/2*rho*||xi1 + xi2 + xi3||^2)

ADMM.add_update(xi1, lin.argmin(xi1, g(xi1) + 1/2*rho*lin.norm_square(xi1 +

↪→xi2 + xi3)))

xi2 <- argmin(x2, f^*(xi2) + 1/2*rho*||xi1 + xi2 + xi3||^2)

ADMM.add_update(xi2, lin.argmin(xi2, f(xi2) + 1/2*rho*lin.norm_square(xi1 +

↪→xi2 + xi3)))

xi3 <- xi3 + xi1 + xi2

ADMM.add_update(xi3, xi3 + xi1 + xi2)

ADMM.parse()

--

Parse ADMM.

State-space realization:ξ+1ξ+2
ξ+3

 =

0 −1 −1
0 1 0
0 0 0

ξ1ξ2
ξ3

+

− 1
ρ 0

1
ρ − 1

ρ

0 − 1
ρ

[d
dy0

g(y0)
d
dy1

f(y1)

]
[
y0
y1

]
=

[
0 −1 −1
0 1 0

]ξ1ξ2
ξ3

+

[− 1
ρ 0

1
ρ − 1

ρ

][d
dy0

g(y0)
d
dy1

f(y1)

]
--

check permutation and conjugation

between DR and ADMM

lin.test_conjugate_permutation(DR, ADMM)

26

--

==

Parameters of Douglas-Rachford splitting:

t
Parameters of ADMM:

ρ
Douglas-Rachford splitting is a conjugate permutation of ADMM, if the parameters

satisfy:

ρ = t
==

--

9.2. Implementation. In this subsection, we briefly describe the implementation of Linnaeus. All
expressions in Linnaeus are defined symbolically, using the python package for symbolic mathematics sympy.
In Linnaeus, an algorithm is specified by defining variables, parameters, functions, oracles, and update
equations. All variables and parameters are symbolic, so there is no need to specialize problem dimensions
or parameter choices. The system automatically translates an input algorithm into its state-space realization
and computes the transfer function. The transfer functions can be compared and manipulated as needed to
establish various kinds of equivalences or other relations between algorithms.

Parameter declaration. Parameters of the algorithm can be declared as scalar (commutative) or vector
or matrix (noncommutative). The following code shows how to add scalar t and matrix L to algo1.

add a scalar parameter t

t = algo1.add_parameter("t")

add a matrix parameter L

L = algo1.add_parameter("L", commutative = False)

Parameter specification. Given two input algorithms, Linnaeus computes the transfer functions and can
compare them to detect equivalence and other relations. Some algorithms are equivalent or related only when
the parameters satisfy a certain condition: for example, DR and ADMM. If the transfer functions of each
algorithm use different parameters, Linnaeus form symbolic equations and solve the equations to determine
conditions that, if satisfied by the algorithm parameters, yield the desired relation between the algorithms;
see (5.5) in section 5.

Oracles and function. Oracles play the starring role in our framework: oracle equivalence is possible
only if two algorithms share the same oracles. In Linnaeus, we provide two approaches to declare and add
oracles to an algorithm. The black-box approach is to define oracles as black boxes. When parsing the
algorithm, the system treats each oracle as a distinct entity unrelated to any other oracle. An oracle declared
using syntax add oracle uses the black-box approach. For example, we may add oracles ∇f and proxg to
algorithm algo1:

add oracle gradient of f in the first approach

gradf = algo1.add_oracle("gradf")

add oracle prox of g in the first approach

proxg = algo1.add_oracle("proxg")

The functional approach is to define oracles in terms of the (sub)gradient of a function. When parsing
an algorithm, all the oracles will be decomposed into (sub)gradients and the state-space realization given
in terms of (sub)gradients. We say that two algorithms are oracle-equivalent in terms of functional oracles
if they are oracle-equivalent after rewriting the algorithm to use only (sub)gradient oracles. This approach
is critical to allow us to identify algorithm conjugation, since conjugate algorithms use different (conjugate)
oracles. If every algorithm is represented in terms of (sub)gradients, algorithm conjugation can be detected
using proposition 8.1. Fortunately, common oracles such as prox and argmin can be easily written in terms
of (sub)gradients: for example, proxf (x) = (I − ∂f)−1(x) and argmin as (9.1).

To use the functional approach, users must define and add functions to the algorithm first using add function

and then declare and add oracles. The following code shows how to use the functional approach to declare
and add oracles ∇f and proxf .

27

add function f

f = algo1.add_function("f")

gradient of f with repect to x1

lin.grad(f)(x1)

prox of f with repect to x2 and parameter t

lin.prox(f,t)(x2)

9.3. Black-box vs functional oracles. Are two algorithms equivalent with respect to black-box ora-
cles if and only if they are equivalent with respect to functional oracles? Intuitively, when oracles are defined
in terms of (sub)gradients, it might be possible to identify more relations with other algorithms. However,
as stated in proposition 9.1, for algorithms that use only proximal operators, argmins, and (sub)gradients as
oracles, equivalence is preserved under both black-box and functional definitions of oracles.

Proposition 9.1. Suppose two algorithms use only proximal operators, argmins, and (sub)gradients as
oracles. Then the two algorithms are equivalent with respect to black-box oracles if and only if they are also
equivalent with respect to functional oracles.

Proof. Since for any function g and any t, proxtg(x) = argminy{tg(y)+ 1
2‖x−y‖

2}, we can treat proximal
operator as a special case of argmin. Without loss of generality, any argmin oracle in a linear algorithm has
the form

z = argminx

{
λg(x) +

1

2

[
x
y

]T [
Q11 Q12

Q21 Q22

] [
x
y

]}
.

Here z is the value of the oracle and y can be regarded as the argument, which means from the perspective
of a linear system, z is the input and y is the output. The parameter λ can be a scalar or matrix, g is a
function, and Q11, Q12, Q21, Q22 are parameter matrices. Specifically,[

Q11 Q12

Q21 Q22

]
is a symmetric matrix and

1

2

[
x
y

]T [
Q11 Q12

Q21 Q22

] [
x
y

]
is a quadratic term with respect to x and y. The matrix Q11 must be invertible if the argmin oracle is
single-valued. To recover the proximal operator, choose a scalar λ and set[

Q11 Q12

Q21 Q22

]
=

[
I −I
−I I

]
.

If g is a convex function, the argmin oracle can be written in terms of the subgradient oracle ∂g as follows
[2, §6; 13, §2],

(9.1) z ∈ −Q−111 λ∂g(z)−Q−111 Q12y.

Suppose we have an algorithm with n+m oracles in total, consisting of n argmins and m (sub)gradients.
We can group the argmins and the (sub)gradients together respectively and partition the state-space realiza-
tion accordingly as

(9.2)

 A B1 B2

C1 D11 D12

C2 D21 D22

 ,
where C1, B1 correspond to the argmins, C2, B2 correspond to the (sub)gradients, and D is partitioned
accordingly into D11, D12, D21, and D22. The transfer function can be represented accordingly as

Ĥ(z) =

[
Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

]
=

[
C1(zI −A)−1B1 +D11 C1(zI −A)−1B2 +D12

C2(zI −A)−1B1 +D21 C2(zI −A)−1B2 +D22

]
.

28

The input and output are partitioned as (ū1, ū2) and (ȳ1, ȳ2), where ȳ1 = (y1, . . . , yn), ȳ2 = (yn+1, . . . , yn+m),
ū1 = (z1, . . . , zn), and ū2 = (∇fn+1(yn+1), . . . ,∇fn+m(yn+m)). For each i ∈ {1, . . . , n} we have

(9.3) zi = argminx

{
λifi(x) +

1

2

[
x
yi

]T [
Qi11 Qi12
Qi21 Qi22

] [
x
yi

]}

where Qi11 is invertible for any i ∈ {1, . . . , n}.
Now we rewrite the linear system so that the nonlinearities corresponding to the argmins for the new linear

system are (sub)gradients. Let λ = diag(λ1, . . . , λn), Q1 = diag(Q1
11, . . . , Q

n
11), Q2 = diag(Q1

12, . . . , Q
n
12), and

M1 = Q−11 Q2, and M2 = Q−11 λ. The new state-space realization in terms of the (sub)gradient oracles is

(9.4)

 A−B1(I +M1D11)−1M1C1 −B1(I +M1D11)−1M2 B2 −B1(I +M1D11)−1M1D12

−(I +M1D11)−1M1C1 −(I +M1D11)−1M2 −(I +M1D11)−1M1D12

C2 −D21(I +M1D11)−1M1C1 −D21(I +M1D11)−1M2 D22 −D21(I +M1D11)−1M1D12

 .
We can compute the transfer function as
(9.5)

Ĥ ′(z) =

[
Ĥ ′11(z) Ĥ ′12(z)

Ĥ ′21(z) Ĥ ′22(z)

]
=

[
−(I +M1Ĥ11(z))−1M2 −(I +M1Ĥ11(z))−1M1Ĥ12(z)

−Ĥ21(z)(I +M1Ĥ11(z))−1M2 Ĥ22(z) − Ĥ21(z)(I +M1Ĥ11(z))−1M1Ĥ12(z)

]
.

Note that I +M1D11 is invertible (otherwise the algorithm is not causal) and consequently I +M1Ĥ11(z) is
invertible. The matrix Q1 is also invertible, since Qi11 is invertible for any i ∈ {1, . . . , n}. A detailed proof of
(9.4) and (9.5) is provided in appendix H. Therefore, we know that if Ĥ(z) is fixed then Ĥ ′(z) is also fixed.

10. Conclusion and future work. In this paper, we have presented a framework for reasoning about
equivalence between a broad class of iterative algorithms by using ideas from control theory to represent
optimization algorithms. The main insight is that by representing an algorithm as a linear dynamical system
in feedback with a static nonlinearity, we can recognize equivalent algorithms by detecting algebraic relations
between the transfer functions of the associated linear systems. This framework can identify algorithms
that result in the same sequence of oracle calls, or algorithms that are the same up to shifts of the update
equations, repetition of the updates with the same unit block, and conjugation of the function oracles. These
ideas are implemented in the software package Linnaeus, which allows researchers to search for algorithms
that are related to a given input and identify parameter settings that make the algorithms equivalent. Our
goal is to allow researchers add new algorithms to Linnaeus as they are developed, so that Linnaeus can
remain a valuable resource for algorithm designers seeking to understand connections (if any) to previous
methods.

Our framework requires that the algorithm is linear in the state and oracle outputs, but not necessarily
in the parameters. This constraint still allows us to handle a surprisingly large class of algorithms. There
are several interesting directions for future work.

Can we detect equivalence between stochastic or randomized algorithms? Our framework applies to such
algorithms with almost no modifations, simply by allowing random oracles. For example, we can accept
oracles like random search argmin{f(x+ωi) : i = 1, . . . , k}, stochastic gradient ∇f(x) +ω, or noisy gradient
∇f(x + ω). The definition of oracle equivalence would need a slight modification: for algorithms that use
(pseudo-)randomized oracles, two algorithms are oracle-equivalent if they generate identical sequences of
oracle calls given the same random seed.

Can we detect equivalence between parallel or distributed algorithms? Surprisingly, our framework still
works for parallel or distributed algorithms. Notice that in a parallel algorithm, many oracle calls may
be independently executed on different processors at about the same time. The precise ordering of these
calls is not determined by the algorithm, and so different runs of the algorithm can generate different oracle
sequences. However, all the possible oracle sequences generated by the same algorithm share the same
dependence graph. Using the formalism defined in subsection 6.1, we can see that our framework can identify
equivalence between parallel or distributed algorithms using the expanded definition of oracle equivalence:
two algorithms are oracle-equivalent if there exists a way of writing each algorithm as a sequence of updates
so that they generate identical sequences of oracle calls.

29

Can we detect equivalence between adaptive or nonlinear algorithms? Transfer functions are only defined
for linear time-invariant (LTI) systems, so the LTI assumption in our framework is critical. Nevertheless,
many of the other concepts from subsection 3.3 do extend to systems that are almost LTI. For example, an
algorithm with parameters that change on a fixed schedule but is otherwise linear, such as gradient descent
with a diminishing stepsize, can be regarded as a linear time-varying (LTV) system [1], and the notion of a
transfer function has been generalized to LTV systems [17]. If, instead, the parameters change adaptively
based on the other state variables, the system can be regarded as a linear parameter varying (LPV) system [21]
or a switched system [30]. Examples of such algorithms include nonlinear conjugate gradient methods and
quasi-Newton methods.

For these more complicated cases, it is still reasonable to ask whether two algorithms invoke the same
sequence of oracle calls. Discovering representations for nonlinear or time-varying algorithms that suffice to
check equivalence is an interesting direction for future research.

REFERENCES

[1] P. J. Antsaklis and A. N. Michel, Linear systems, Birkhäuser, 2006.
[2] A. Beck, First-order methods in optimization, SIAM, 2017.
[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal

on Imaging Sciences, 2 (2009), pp. 183–202.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the

alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), pp. 1–122.
[5] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
[6] S. Bubeck, Convex optimization: algorithms and complexity, Foundations and Trends® in Machine Learning, 8 (2015),

pp. 231–357.
[7] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in hilbert

space, Journal of Optimization Theory and Applications, 148 (2011), pp. 318–335.
[8] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging,

Journal of mathematical imaging and vision, 40 (2011), pp. 120–145.
[9] C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu, Online optimization with gradual

variations, in Conference on Learning Theory, 2012, pp. 1–6.
[10] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, Training GANs with optimism, in International Conference on

Learning Representations, 2018.
[11] J. Douglas and H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables,

Transactions of the American mathematical Society, 82 (1956), pp. 421–439.
[12] J. Eckstein and D. P. Bertsekas, On the douglas-rachford splitting method and the proximal point algorithm for maximal

monotone operators, Mathematical Programming, 55 (1992), pp. 293–318.
[13] W. Fenchel, Convex cones, sets and functions, mimeographed notes, Princeton University, 1953.
[14] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien, A variational inequality perspective on gen-

erative adversarial networks, in International Conference on Learning Representations, 2019.
[15] J. H. Goodnight, A tutorial on the sweep operator, The American Statistician, 33 (1979), pp. 149–158.
[16] B. Hu, P. Seiler, and L. Lessard, Analysis of biased stochastic gradient descent using sequential semidefinite programs,

Mathematical Programming, (2020), pp. 1–26.
[17] E. W. Kamen, P. P. Khargonekar, and K. R. Poolla, A transfer-function approach to linear time-varying discrete-time

systems, SIAM Journal on Control and Optimization, 23 (1985), pp. 550–565, https://doi.org/10.1137/0323035.
[18] L. Lessard, B. Recht, and A. Packard, Analysis and design of optimization algorithms via integral quadratic constraints,

SIAM Journal on Optimization, 26 (2016), pp. 57–95.
[19] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical

Analysis, 16 (1979), pp. 964–979.
[20] Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM Journal on Optimization,

25 (2015), pp. 502–520.
[21] J. Mohammadpour and C. Scherer, Control of linear parameter varying systems with applications, Springer New York,

2012.
[22] J. J. Moreau, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, Comptes rendus

hebdomadaires des séances de l’Académie des sciences, 255 (1962), pp. 238–240.
[23] Y. Nesterov, Lectures on convex optimization, Springer, 2018.
[24] D. O’Connor and L. Vandenberghe, On the equivalence of the primal-dual hybrid gradient method and douglas–rachford

splitting, Mathematical Programming, 179 (2020), pp. 85–108.
[25] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization, 1 (2014), pp. 127–239.
[26] L. D. Popov, A modification of the arrow-hurwicz method for search of saddle points, Mathematical notes of the Academy

of Sciences of the USSR, 28 (1980), pp. 845–848.
[27] A. Rakhlin and K. Sridharan, Online learning with predictable sequences, vol. 30 of Proceedings of Machine Learning

Research, 2013, pp. 993–1019.
[28] E. K. Ryu and S. Boyd, Primer on monotone operator methods, Appl. Comput. Math, 15 (2016), pp. 3–43.
[29] E. K. Ryu and W. Yin, Large-scale convex optimization via monotone operators, Draft, 2020.

https://doi.org/10.1137/0323035

30

[30] Z. Sun, Switched linear systems: control and design, Springer Science & Business Media, 2006.
[31] M. J. Tsatsomeros, Principal pivot transforms: properties and applications, Linear Algebra and its Applications, 307

(2000), pp. 151–165.
[32] B. Van Scoy, R. A. Freeman, and K. M. Lynch, The fastest known globally convergent first-order method for minimizing

strongly convex functions, IEEE Control Systems Letters, 2 (2017), pp. 49–54.
[33] F. Vasilyev, E. Khoroshilova, and A. Antipin, An extragradient method for finding the saddle point in an optimal

control problem, Moscow University Computational Mathematics and Cybernetics, 34 (2010), pp. 113–118.
[34] Z. Wen, D. Goldfarb, and W. Yin, Alternating direction augmented lagrangian methods for semidefinite programming,

Mathematical Programming Computation, 2 (2010), pp. 203–230.
[35] R. L. Williams, D. A. Lawrence, et al., Linear state-space control systems, John Wiley & Sons, 2007.

31

Appendix A. Proof of (3.14). Since u and y are partitioned as u = (u1,u2) and y = (y1,y2), the
state-space realization can be partitioned accordingly as

 A B1 B2

C1 D11 D12

C2 D21 D22

 .

We can express the transfer function Ĥ(z) as

Ĥ(z) =

[
Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

]
=

[
C1(zI −A)−1B1 +D11 C1(zI −A)−1B2 +D12

C2(zI −A)−1B1 +D21 C2(zI −A)−1B2 +D22

]
.

The system equations show as

(A.1)

xk+1 = Axk +B1u
k
1 +B2u

k
2

yk1 = C1x
k +D11u

k
1 +D12u

k
2

yk2 = C2x
k +D21u

k
1 +D22u

k
2 .

As we invert the input-output map corresponding to y1 and u1, the input of this system becomes (yk1 , u
k
2)

and the output is (uk1 , y
k
2) at time k. From (A.1), as D11 is invertibe, we have

(A.2) uk1 = −D−111 C1x
k +D−111 y

k
1 −D−111 D12u

k
2 .

The new system equations change to

(A.3)

xk+1 = (A−B1D
−1
11 C1)xk +B1D

−1
11 y

k
1 + (B2 −B1D

−1
11 D12)uk2

uk1 = −D−111 C1x
k +D−111 y

k
1 −D−111 D12u

k
2

yk2 = (C2 −D21D
−1
11 C1)xk +D21D

−1
11 y

k
1 + (D22 −D21D

−1
11 D12)uk2 ,

which correspond to state-space realization

(A.4)

 A−B1D
−1
11 C1 B1D

−1
11 B2 −B1D

−1
11 D12

−D−111 C1 D−111 −D−111 D12

(C2 −D21D
−1
11 C1) D21D

−1
11 D22 −D21D

−1
11 D12

 .

To calculate the transfer function, note that

(zI −A+B1D
−1
11 C1)−1 = (zI −A)−1 + (zI −A)−1B1(−D11 − C1(zI −A)−1B1)−1C1(zI −A)−1

= (zI −A)−1 − (zI −A)−1B1Ĥ
−1
11 (z)C1(zI −A)−1.

32

We have

Ĥ ′11(z) = −D−111 C1((zI −A)−1 − (zI −A)−1B1Ĥ
−1
11 (z)C1(zI −A)−1)B1D

−1
11 +D−111

= −D−111 (Ĥ11(z)−D11 − (Ĥ11(z)−D11)Ĥ−111 (z)(Ĥ11(z)−D11))D−111 +D−111

= −D−111 (Ĥ11(z)−D11)(I − Ĥ−111 (z)(Ĥ11(z)−D11))D−111 +D−111

= −D−111 (Ĥ11(z)−D11)Ĥ−111 (z) +D−111

= Ĥ−111 (z)

Ĥ ′12(z) = −D−111 C1((zI −A)−1 − (zI −A)−1B1Ĥ
−1
11 (z)C1(zI −A)−1)B2 − Ĥ−111 (z)D12

= −D−111 (Ĥ12(z)−D12 − (Ĥ11(z)−D11)Ĥ−111 (z)(Ĥ12(z)−D12))− Ĥ−111 (z)D12

= −D−111 (I − (Ĥ11(z)−D11)Ĥ−111 (z))(Ĥ12(z)−D12)− Ĥ−111 (z)D12

= −Ĥ−111 (z)(Ĥ12(z)−D12)− Ĥ−111 (z)D12

= −Ĥ−111 (z)Ĥ12(z)

Ĥ ′21(z) = C2((zI −A)−1 − (zI −A)−1B1Ĥ
−1
11 (z)C1(zI −A)−1)B1D

−1
11 +D21Ĥ

−1
11 (z)

= (Ĥ21(z)−D21 − (Ĥ21(z)−D21)Ĥ−111 (z)(Ĥ11(z)−D11))D−111 +D21Ĥ
−1
11 (z)

= (Ĥ21(z)−D21)(I − Ĥ−111 (z)(Ĥ11(z)−D11))D−111 +D21Ĥ
−1
11 (z)

= (Ĥ21(z)−D21)Ĥ−111 (z) +D21Ĥ
−1
11 (z)

= Ĥ21(z)Ĥ−111 (z)

Ĥ ′22(z) = Ĥ22(z)− (Ĥ21(z)−D21)Ĥ−111 (z)(Ĥ12(z)−D12)−D21Ĥ
−1
11 (z)(Ĥ12(z)−D12)

− (Ĥ21(z)−D21)Ĥ−111 (z)D12 −D21Ĥ
−1
11 (z)D12

= Ĥ22(z)− Ĥ21(z)Ĥ−111 (z)Ĥ12(z).

Thus, we get the desired results as (3.14).

Appendix B. Proof of proposition 6.1.

Algorithm B.1 General form of algorithm A
for k = 0, 1, 2, . . . do
xk+1
1 = L1(xk1 , . . . , x

k
m)

xk+1
2 = L2(xk+1

1 , xk2 , . . . , x
k
m)

...
xk+1
i = Li(x

k+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
m, u

k+1
1)

...
xk+1

ĩ
= Lĩ(x

k+1
1 , . . . , xk+1

ĩ−1 , x
k
ĩ
, . . . , xkm, u

k+1
n)

...
xk+1
m = Lm(xk+1

1 , . . . , xk+1
m−1, x

k
m)

end for

Without loss of generality, we can express algorithm A in the general form as algorithm B.1. Since A
is an linear algorithm, L1, . . . , Lm are linear functions. Given an initialization {x01, . . . , x0m}, A generates
state sequence (xk1 , . . . , x

k
m)k≥0, input sequence (uk1 , . . . , u

k
n)k≥1, and output sequence (yk1 , . . . , y

k
n)k≥1. The

ith update equation is the first update equation that contains an oracle call, corresponding to uk1 and yk1 .
The ĩth update equation is the last update equation that contains an oracle call, corresponding to ukn and

33

ykn. The outputs are also linear functions of the states. Specifically, we have

yk1 =Y1(xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
m), uk1 = φ1(yk1)

...

ykn =Yn(xk+1
1 , . . . , xk+1

ĩ−1 , x
k
ĩ
, . . . , xkm), ukn = φn(ykn).

Functions Y1, . . . , Yn are linear functions and φ1, . . . , φn denote the oracle calls. Without loss of generality,
suppose permutation π̃ = (l̃ + 1, . . . ,m, 1, . . . , l̃) with 1 < l̃ < m.

First case. Suppose the new order of oracle calls within one iteration is a cyclic permutation π of (n)
(not identical to (n)). Without loss of generality, suppose π = (j + 1, . . . , n, 1, . . . , j) with 1 < j < n, the jth
oracle call corresponds to the j̃th update equation, and the j+ 1th oracle call corresponds to the p̃th update
equation. By definition, we have i ≤ j̃ < l̃+ 1 ≤ p̃ ≤ ĩ. At the first time step k = 1, the first input is u11 and
the first output is y11 , and the j + 1th input and output are u1j+1 and y1j+1. We have

y11 = Y1(x11, . . . , x
1
i−1, x

0
i , . . . , x

0
m)

x1
l̃+1

= Ll̃+1(x11, . . . , x
1
l̃
, x0
l̃+1

, . . . , x0m)

y1j+1 = Y1(x11, . . . , x
1
p̃−1, x

0
p̃, . . . , x

0
m).

Here without loss of generality, suppose the l̃+ 1th update equation does not contain an oracle call. In other
words, j̃ < l̃ + 1 < p̃. By definition, B calls the update equations in the order π̃. At the first time step, the
l̃+ 1th update equation is first called. If B is suitably initialized with states {x11, . . . , x1l̃ , x

0
l̃+1

, . . . , x0m}, it will

generate state sequence (xk
l̃+1

, . . . , xkm, x
k+1
1 , . . . , xk+1

l̃
)k≥0, input sequence (ukj+1, . . . , u

k
n, u

k+1
1 , . . . , uk+1

j)k≥1,

and output sequence (ykj+1, . . . , y
k
n, y

k+1
1 , . . . , yk+1

j)k≥1. The input and output sequences of A and B match

up to prefixes (u11, . . . , u
1
j) and (y11 , . . . , y

1
j) respectively. Therefore, A and B are shift-equivalent.

Second case. Suppose the order of oracle calls within one iteration remain unchanged (identical to (n)).
By definition, we have 1 < l̃ + 1 ≤ i. We have

x1
l̃+1

= Ll̃+1(x11, . . . , x
1
l̃
, x0
l̃+1

, . . . , x0m)

y11 = Y1(x11, . . . , x
1
i−1, x

0
i , . . . , x

0
m).

Here without loss of generality, suppose the l̃ + 1th update equation does not contain an oracle call. In
other words, l̃ + 1 < i. By definition, B calls the update equations in the order π̃. At the first time step,
the l̃ + 1th update equation is first called. If B is suitably initialized with states {x11, . . . , x1l̃ , x

0
l̃+1

, . . . , x0m},
it will generate state sequence (xk

l̃+1
, . . . , xkm, x

k+1
1 , . . . , xk+1

l̃
)k≥0. The input and output sequences remain

unchanged. Therefore, A and B are oracle-equivalent. Meanwhile, since oracle equivalence can be regarded
as a special case of shift equivalence, A and B are also shift-equivalent.

Appendix C. Discussions on permutation and its generalization. To take a revisit of proposi-
tion 6.3, it can be found that as algorithm A is permuted to make the order of oracle calls within one iteration
as (j + 1, . . . , n, 1, . . . , j) from (1, . . . , n), the resulting transfer function is exactly the same as adding a one-
step time delay to channels (oracles) (1, . . . , j) according to results in control theory. Another interpretation
of adding a one-step time delay comes from the system equations (6.5). We can see that the input and output
corresponding to channels (oracles) (1, . . . , j) are the input and output for the next time step ūk+1

1 and ȳk+1
1 ,

however, the input and output of channels (oracles) (j + 1, . . . , n) are still the ones for the current time step
ūk2 and ȳk2 . Intrinsically, after cyclic permutation, the intrinsic update order of oracles does not change, but
a one-step time delay is added to the oracles that we would like to update latterly.

Using the idea of time delay, we can generalize algorithm permutation as adding any step of time delay
to any channel (oracle) of an algorithm. Suppose we add time delay to oracle i of algorithm A by di for any
i ∈ (n), where di can be any integer, the resulting algorithm B has transfer function ĤB(z) as

(C.1) ĤB(z) =


zd1

zd2

. . .

zdn

 ĤA(z)


z−d1

z−d2

. . .

z−dn

 ,

34

where ĤA(z) is the transfer function of A.
To be more specific, suppose we add time delay di to oracle i for algorithm A, hklA(z) with 1 ≤ k ≤ n and

1 ≤ l ≤ n denotes the entry of ĤA(z). The transfer function of the resulting algorithm B can be expressed
entrywise as

(C.2) hklB (z) =


hiiA(z) k = i l = i
hilA(z)zdi k = i l 6= i
hkiA (z)z−di k 6= i l = i
hklA(z) k 6= i l 6= i

In this way, we know that proposition 6.3 is a special case of (C.1) with d1 = · · · = dj = 1.
However, there are restrictions so that we cannot add any arbitrary step of time delay to any oracle.

From section 3.3, transfer functions are rational (matrix) functions with respect to z. Further, the rational
functions must be proper in order to make the transfer function realizable. From (C.2), as we add time
delay di to oracle i for A, the off-diagonal entries in the ith row of ĤA(z) are multiplied by zdi and the
off-diagonal entries in the ith column of ĤA(z) are multiplied by z−di while the ith diagonal entry remains
unchanged. From the perspective of relative degrees, as relative degree is the difference between the degree
of denominator and the degree of numerator, the relative degrees of the off-diagonal entries in the ith row
are decreased by di but the relative degrees of the off-diagonal entries in the ith column are increased by di.
Suppose the smallest relative degree among the off-diagonal entries in the ith row is ri, then di must satisfy
di ≤ ri to maintain properness of the resulting off-diagonal entries in the ith row. Similarly, suppose the
smallest relative degree among the off-diagonal entries of the ith column is ci, then di must satisfy −di ≤ ci
to maintain properness of the resulting off-diagonal entries in the ith column. In other words, we can add
time delay di to oracle i only if −ci ≤ di ≤ ri. Otherwise, at least one off-diagonal entry in the ith row or
the ith column is no longer proper, leading to an invalid transfer function.

For any algorithm with state-space realization (A,B,C,D), the transfer function is calculated by C(zI−
A)−1B+D. Term C(zI−A)−1B is a strictly proper (matrix) function, where strictly proper means that the
degree of z in the numerator polynomial is strictly less than the degree of z in the denominator polynomial.
Thus, for any nonzero entry of D, the corresponding entry in the transfer function has relative degree zero.
Take a revisit of cyclic permutation, for any causal algorithm, the entries above diagonal of the D matrix
must be zero, especially after necessary reordering. Thus, the entries above diagonal in the transfer function
have strictly positive relative degrees. This implies that any cyclic permutation of an algorithm always
exists. Note that before performing cyclic permutation, we are required to reorder the state-space realization
if needed.

Reconsider algorithms 6.5 and 6.6, in (6.11) and (6.12), comparing Ĥ10(z) to Ĥ11(z), we add a one-step
time delay to the first channel. Term 1

z−1 in Ĥ10(z) is multiplied by z and term 2z−1
z−1 is multiplied by z−1.

Further, the off-diagonal entry in the first row of Ĥ10(z) has relative degree 1 and the off-diagonal entry in
the first column of Ĥ10(z) has relative degree 0. Thus, we can only add time delay d1 = 1 to the first oracle
of algorithm 6.5, as 0 ≤ d1 ≤ 1 to maintain properness.

Appendix D. Proof of shift-equivalence of DR and ADMM continued. Suppose the oracles
for both DR (algorithm 6.5) and ADMM (algorithm 6.6) are subgradients of f and g. Oracles prox and
argmin can be expanded as inclusions involving subgradients. The update equations of DR and ADMM
can be rewritten into formations of algorithms D.1 and D.2 respectively. Note that the update equations
involving subgradients are inclusions.

Algorithm D.1 DR

for k = 0, 1, 2, . . . do
xk+1
1 ∈ xk3 − t∂f(xk+1

1)
xk+1
2 ∈ 2xk+1

1 − xk3 − t∂g(xk+1
2)

xk+1
3 = xk3 + xk+1

2 − xk+1
1

end for

Algorithm D.2 ADMM

for k = 0, 1, 2, . . . do
ξk+1
1 ∈ ξk2 − ξk3 − 1

ρ∂g(ξk+1
1)

ξk+1
2 ∈ ξk+1

1 + ξk3 − 1
ρ∂f(ξk+1

2)

ξk+1
3 = ξk3 + ξk+1

1 − ξk+1
2

end for

We still assume ρ = 1/t in ADMM. The transfer functions are computed as Ĥ18(z) and Ĥ19(z) respec-

35

tively. Note that Ĥ19(z) is not written in the causal order.

Ĥ18(z) =


0 0 1 −t 0
0 0 1 −2t −t
0 0 1 −t −t
0 0 1 −t 0
0 0 1 −2t −t

 =

[
− tz
z−1 − t

z−1
t−2tz
z−1 − tz

z−1

]

Ĥ19(z) =


0 1 −1 0 −t
0 1 0 −t −t
0 0 0 t 0
0 1 0 −t −t
0 1 −1 0 −t

 =

[
− tz
z−1 − tz

z−1
t−2tz
z(z−1) − tz

z−1

]

From propositions 6.1 and 6.3, we know that they are still (cyclic) permutation and they are shift-equivalent.

Appendix E. Proof of proposition 7.3. Suppose the oracles of algorithm A : X → X can be
represented as φ : X → X . Since A converges to fixed point (y?, u?, x?), it satisfies

x? = Ax? +Bu?

y? = Cx? +Du?

u? = φ(y?).

Therefore, we have
x? = Ax? +Bu?

= A(Ax? +Bu?) +Bu?

= A2x? +ABu? +Bu?

= . . .

= An−1x? +An−2Bu? + · · ·+ABu? +Bu?

= Anx? +An−1Bu? + · · ·+ABu? +Bu?

y? = Cx? +Du?

= C(Ax? +Bu?) +Du?

= CAx? + CBu? +Du?

= . . .

= CAn−1x? + CAn−2Bu? + · · ·+ CBu? +Du?.

With (7.5), we have

x? = Anx? +An−1Bu? + · · ·+ABu? +Bu?

y? = Cx? +Du?

y? = CAx? + CBu? +Du?

...

y? = CAn−1x? + CAn−2Bu? + . . . CBu? +Du?,

which indicates that An converges to fixed point (y′, u′, x?) with y′ = y?
⊗

1
n and u′ = u?

⊗
1
n.

Appendix F. Proof of proposition 8.3. Without loss of generality, let the permutation matrix
equal to the identity as proposition 8.1. To simplify the notations, let A B[[n], κ] B[[n], κ̄]

C[κ, [n]] D[κ] D[κ, κ̄]
C[κ̄, [n]] D[κ̄, κ] D[κ̄]

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 ,

36[
Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

]
=

[
Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

]
=

[
C1(zI −A)−1B1 +D11 C1(zI −A)−1B2 +D12

C2(zI −A)−1B1 +D21 C2(zI −A)−1B2 +D22

]
.

In this way, (y[κ]?, y[κ̄]?, u[κ]?, u[κ̄]?, x?) can be written as (y?1 , y
?
2 , u

?
1, u

?
2, x

?), and (u[κ]?, y[κ̄]?, y[κ]?, u[κ̄]?, x?)
can be written as (u?1, y

?
2 , y

?
1 , u

?
2, x

?).
Partition the oracle calls of algorithm A : X → X into two nonlinear oracles φ1 and φ2. Oracle φ1

corresponds to the oracle calls in set κ, and φ2 corresponds to the remaining oracle calls. Since A converges
to fixed point (y?1 , y

?
2 , u

?
1, u

?
2, x

?), it satisfies

x? = Ax? +B1u
?
1 +B2u

?
2

y?1 = C1x
? +D11u

?
1 +D12u

?
2

y?2 = C2x
? +D21u

?
1 +D22u

?
2

u?1 = φ1(y?1)

u?2 = φ2(y?2).

The state-space realization of B is the same as (A.4). Note that D11 is invertible, we have

x? = Ax? +B2u
?
2 +B1u

?
1

= Ax? +B2u
?
2 +B1(−D−111 C1x

? +D−111 y
?
1 −D−111 D12u

?
2)

= (A−B1D
−1
11 C1)x? +B1D

−1
11 y

?
1 + (B2 −B1D

−1
11 D12)u?2

u?1 = −D−111 C1x
? +D−111 y

?
1 −D−111 D12u

?
2

y?2 = C2x
? +D22u

?
2 +D21u

?
2

= C2x
? +D22u

?
2 +D21(D−111 y

?
1 −D−111 C1x

? −D−111 D12u
?
2)

= (C2 −D21D
−1
11 C1)x? +D21D

−1
11 y

?
1 + (D22 −D21D

−1
11 D12)u?2

y?1 = φ−11 (u?1)

u?2 = φ2(y?2).

Oracle φ−11 is the inverse oracle of oracle φ1. Therefore, we get the desired results that algorithm B converges
to fixed point (u?1, y

?
2 , y

?
1 , u

?
2, x

?).

Appendix G. Commutativity between conjugation and cyclic permutation.

Proposition G.1. Conjugation and cyclic permutation commute.

Proof. Given an algorithm A with transfer function Ĥ(z). Suppose κ is a subset of the oracles of A, Dκ

is invertible, and π = (m+ 1, . . . , n, 1, . . . ,m) is an arbitrary cyclic permutation of the oracles of A. We will
show that the transfer functions of CκPπA and PπCκA are identical.

Suppose Ĥ?(z) is the transfer function of PπA, the results in proposition 6.3 can be written as

(G.1) Ĥ?(z) = QĤ(z)Q−1.

Here Q is a diagonal matrix where the first m diagonal entries are all z and the rest of the diagonal entries
are all ones. We will use the same settings and notations as proposition 8.1 to express changes in transfer
function of conjugation Cκ. Without loss of generality, the transfer function Ĥ ′(z) of CκA satisfies

(G.2) Ĥ ′(z) =

[
Ĥ−111 (z) −Ĥ−111 (z)Ĥ12(z)

Ĥ21(z)Ĥ−111 (z) Ĥ22(z)− Ĥ21(z)Ĥ−111 (z)Ĥ12(z)

]
.

Thus we can partition matrix Q as diag(Q1, Q2), where Q1 corresponds to the oracles in κ and Q2 corresponds
to the rest part of oracles. Consequently, Q−1 can be written as diag(Q1

−1, Q2
−1).

From (G.1) and (G.2), we have

37

Ĥ(z)
Cκ−→
[

Ĥ−111 (z) −Ĥ−111 (z)Ĥ12(z)

Ĥ21(z)Ĥ−111 (z) Ĥ22(z)− Ĥ21(z)Ĥ−111 (z)Ĥ12(z)

]
Pπ−−→

[
Q1Ĥ

−1
11 (z)Q−11 −Q1Ĥ

−1
11 (z)Ĥ12(z)Q−12

Q2Ĥ21(z)Ĥ−111 (z)Q−11 Q2Ĥ22(z)Q−12 −Q2Ĥ21(z)Ĥ−111 (z)Ĥ12(z)Q−12

]
,

Ĥ(z)
Pπ−−→

[
Q1Ĥ11(z)Q−11 Q1Ĥ12(z)Q−12

Q2Ĥ21(z)Q−11 Q2Ĥ22(z)Q−12

]
Cκ−→
[

Q1Ĥ
−1
11 (z)Q−11 −Q1Ĥ

−1
11 (z)Ĥ12(z)Q−12

Q2Ĥ21(z)Ĥ−111 (z)Q−11 Q2Ĥ22(z)Q−12 −Q2Ĥ21(z)Ĥ−111 (z)Ĥ12(z)Q−12

]
.

We get the desired results to show Cκ and Pπ commute. Therefore, conjugation and cyclic permutation
commute.

Appendix H. Proof of (9.4) and (9.5). For each i ∈ {1, . . . , n} we have

zi = argminx

{
λifi(x) +

1

2

[
x
yi

]T [
Qi11 Qi12
Qi21 Qi22

] [
x
yi

]}
.

Besides, Qi11 is invertible for any i ∈ {1, . . . , n}. Since fi is a convex function, the argmin oracle can be

written as zi ∈ −Qi11
−1
λ∂fi(zi) − Qi11

−1
Qi12yi by treating ∂fi as the oracle. Written into matrix form, we

have

(H.1) ū1 = −Q1
−1λũ1 −Q1

−1Q2ȳ1,

where ũ1 = [∂f1(z1), . . . , ∂fn(zn)]T . Combine (H.1) with the state-space realization (9.2), we get the desired
results for (9.4). The corresponding system equations show as

xk+1 = (A−B1(I +M1D11)−1M1C1)xk −B1(I +M1D11)−1M2ũ
k
1 + (B2 −B1(I +M1D11)−1M1D12)ūk

2

ūk
1 = −(I +M1D11)−1M1C1x

k − (I +M1D11)−1M2ũ
k
1 − (I +M1D11)−1M1D12ū

k
2

ȳk2 = (C2 −D21(I +M1D11)−1M1C1)xk −D21(I +M1D11)−1M2ũ
k
1 + (D22 −D21(I +M1D11)−1M1D12)ūk

2 .

To calculate the transfer function, note that

(zI −A+B1(I +M1D11)−1M1C1)−1 = (zI −A)−1 − (zI −A)−1B1(I +M1Ĥ11(z))−1M1C1(zI −A)−1.

38

We have

Ĥ ′11(z) = (I +M1D11)−1M1C1(zI −A+B1(I +M1D11)−1M1C1)−1B1(I +M1D11)−1M2 − (I +M1D11)−1M2

= (I +M1D11)−1(M1Ĥ11(z) −M1D11)(I − (I +M1Ĥ11(z))−1(M1Ĥ11(z) −M1D11))(I +M1D11)−1M2

− (I +M1D11)−1M2

= (I +M1D11)−1(M1Ĥ11(z) −M1D11)(I +M1Ĥ11(z))−1M2 − (I +M1D11)−1M2

= −(I +M1Ĥ11(z))−1M2

Ĥ ′12(z) = −(I +M1D11)−1M1C1(zI −A+B1(I +M1D11)−1M1C1)−1B2 − (I +M1Ĥ11(z))−1M1D12

= −(I +M1D11)−1(I − (M1Ĥ11(z) −M1D11)(I +M1Ĥ11(z))−1)(M1Ĥ12(z)

−M1D12) − (I +M1Ĥ11(z))−1M1D12

= −(I +M1Ĥ11(z))−1(M1Ĥ12(z) −M1D12) − (I +M1Ĥ11(z))−1M1D12

= −(I +M1Ĥ11(z))−1M1Ĥ12(z)

Ĥ ′21(z) = −C2(zI −A+B1(I +M1D11)−1M1C1)−1B1(I +M1D11)−1M2 −D21(I +M1Ĥ11(z))−1M2

= −(Ĥ21(z) −D21)(I − (I +M1Ĥ11(z))−1(M1Ĥ11(z) −M1D11))(I +M1D11)−1M2

−D21(I +M1Ĥ11(z))−1M2

= −(Ĥ21(z) −D21)(I +M1Ĥ11(z))−1M2 −D21(I +M1Ĥ11(z))−1M2

= −Ĥ21(z)(I +M1Ĥ11(z))−1M2

Ĥ ′22(z) = Ĥ22(z) − (Ĥ21(z) −D21)(I +M1Ĥ11(z))−1M1(Ĥ12(z) −D12) −D21(I +M1Ĥ11(z))−1M1(Ĥ12(z) −D12)

− (Ĥ21(z) −D21)(I +M1Ĥ11(z))−1M1D12 −D21(I +M1Ĥ11(z))−1M1D12

= Ĥ22(z) − Ĥ21(z)(I +M1Ĥ11(z))−1M1Ĥ12(z).

Thus, we get the desired results as (9.5).

	Introduction
	Motivating examples
	Preliminaries
	Optimization
	Algorithms
	Control theory

	Algorithm equivalence
	Oracle equivalence
	Shift equivalence
	Discussion

	A characterization of oracle equivalence
	Motivating examples: proof of equivalence

	A characterization of shift equivalence
	Reordering oracle calls
	Characterization of cyclic permutation
	Applications: proof of shift equivalence

	Algorithm repetition
	Algorithm conjugation
	Linnaeus
	Illustrative examples
	Implementation
	Black-box vs functional oracles

	Conclusion and future work
	References
	Appendix A. Proof of eqp13
	Appendix B. Proof of prop3
	Appendix C. Discussions on permutation and its generalization
	Appendix D. Proof of shift-equivalence of DR and ADMM continued
	Appendix E. Proof of prop13
	Appendix F. Proof of prop14
	Appendix G. Commutativity between conjugation and cyclic permutation
	Appendix H. Proof of eq34 and eq35

