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Abstract— We propose a new recursive estimator for lin-
ear dynamical systems under Gaussian process noise and
non-Gaussian measurement noise. Specifically, we develop an
approximate maximum a posteriori (MAP) estimator using
dynamic programming and tools from convex analysis. Our
approach does not rely on restrictive noise assumptions and
employs a Bellman-like update instead of a Bayesian update.
Our proposed estimator is computationally efficient, with only
modest overhead compared to a standard Kalman filter. Sim-
ulations demonstrate that our estimator achieves lower root
mean squared error (RMSE) than the Kalman filter and has
comparable performance to state-of-the-art estimators, while
requiring significantly less computational power.

I. INTRODUCTION

We consider state estimation for discrete-time linear sys-
tems driven by non-Gaussian noise, in the standard form

(1)
(1b)

Ty = Axi_1 + wy,

yr = Cxy + vy,

where A and C are known, and the distributions of the
process noise w;, measurement noise v, and initial state
x( are specified and not necessarily Gaussian. We make the
standard assumptions that w; and v; are independent of each
other, of z;, and across time.

In this setting, the exact posterior distribution given past
measurements is provided by Bayesian filtering, which is a
recursive formula for updating the conditional state distribu-
tion when a new measurement y; arrives

P(xt | yo:t)
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The estimator that minimizes the mean squared error (MSE),
is given by the conditional expectation

@:Em|ma=/mpm¢m»mb 3)

When the noise and the initial state are Gaussian, the integral
in (2) has a closed-form solution, and the estimator (3) can
be found recursively via the celebrated Kalman filter (KF).

Despite the widespread applications of the KF [1]-[3],
its Gaussianity assumption does not hold in many practical
scenarios. Notable examples include underwater communica-
tion [4], power systems [5] and magnetic resonance imaging
(MRI) [6], where Gaussian mixture or various heavy-tailed
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distributions have been reported. In the non-Gaussian setting,
the integral in (2) typically does not have a closed-form
solution, so one must resort to approximation techniques or
alternatively, use estimators that do not directly deal with
the integration (2). This leads to two general classes of
estimators, which we briefly survey below.

A. Integration-based Estimators

Directly approximating the integral in (2) yields a trade-
off between computational effort and approximation error. At
one extreme, we have sequential Monte Carlo approaches,
such as bootstrap filtering [7] and particle filtering [8], where
distributions are represented by a set of random samples.
These approaches are computationally intensive and also
applicable when the dynamics are nonlinear. At the other ex-
treme, the simplest approach, which we call the standard KF,
is to replace non-Gaussian noise distributions with Gaussian
distributions of matching mean and variance and then apply
a standard KF. Despite being computationally attractive, this
approach may lead to severely degraded performance when
the noise is heavy-tailed or bimodal.

Many other schemes have been proposed that balance
computational load and approximation error. In [9] the noise
and posterior distributions are approximated as a sum of
Gaussians, yielding the Gaussian sum filter. Despite favor-
able performance compared to the standard KF, the number
of Gaussians required to represent the posterior grows expo-
nentially with the time horizon. The work [10] proposed a
more scalable version of GSF. An alternative approach, pro-
posed by Masreliez [11], approximates the Bayesian update
using a score function; the gradient of log P(y; | yo.t—1). This
method outperforms the standard KF, but requires evaluating
a difficult integral similar to (2) at each timestep. The work
[12] proposed an efficient implementation of the Masreliez
estimator via polynomial approximation.

B. Optimization-based Estimators

Alternatively, one may forego the Bayesian update (2),
and instead formulate an optimization problem that is solved
whenever a new measurement arrives. For such estimators,
conditional distributions are never computed or approxi-
mated; rather, robustness to non-Gaussianity is enforced by
explicitly minimizing an auxiliary cost function. In [13], a
maximum correntropy Kalman filter (MCKF) is proposed,
which has shown superior performance compared to the
standard KF in heavy-tailed noise environments. In [14] the
entropy of the estimation error is minimized instead, which
can outperform the MCKF in certain noise environments.



The authors in [15] develop optimization-based estimators
that are resilient to bounded process noise and impulsive
measurement noise. Finally, [16] minimizes the Kullback—
Liebler divergence of the estimation error. Although these
methods, when tuned properly, offer great performance, they
are usually designed for specific measurement noise distri-
butions. Furthermore, since these methods involve auxiliary
optimization at each timestep, they tend to be computation-
ally more demanding than the standard KF.

In this paper, we propose a new estimator inspired by
maximum a posteriori (MAP) estimation. As we detail in
Section III, the MAP framework yields a Bellman-style
recursion rather than Bayesian recursion (2). Although this
Bellman recursion does not have a closed-form solution,
under proper approximation of the value function, it reduces
to algebraic equations, which we use to develop a nonlinear
estimator for the case with Gaussian process noise and non-
Gaussian measurement noise. Simulations show that our pro-
posed estimator achieves lower RMSE than the Kalman filter
and matches the performance of state-of-the-art alternatives
at a fraction of their computational cost.

The rest of the paper is organized as follows. We present
preliminaries and assumptions in Section II, our main results
in Section III, discussion in Section IV, and numerical
examples in Section V. Finally, we conclude and discuss
future research directions in Section VI.

II. PRELIMINARIES AND ASSUMPTIONS
A. Notation

The notation P and [E denote probability density function
(PDF) and expectation of a random variable or vector. For a
square symmetric real matrix M, we write M > 0 to mean
that M is positive definite. We write I,, € R™*"™ to denote the
identity matrix. We write N (p, ) to denote a (multivariate)
Gaussian distribution with mean g and covariance X > 0.
Also, £(-) = logP(-) and £(- | -) = logP(- | -) denote
marginal and conditional log-likelihood, respectively.

For the rest of the paper, we use “x” to denote submatrices
that can be inferred from symmetry and “...” to denote
entries omitted because they are irrelevant to the discussion.

B. Assumptions

We consider the dynamical system (1) where z; € R",
Yy € R, w, € R™, and v; € R? are the state vector,
measured output, process noise, and measurement noise,
respectively, and A and C' are known. For convenience, we
reparameterize P(w;) = e~ %) and P(v;) = e~ "), where
q¢:R" = R and r : RY — R are continuously differentiable.
We also make the mild technical assumption that the mode
exists and is unique for all distributions. These assumptions
encompass many common distributions, such as Gaussian
mixtures, Cauchy, and skewed normal.

C. The Kalman Filter

Consider the dynamical system (1). If the initial state
and the noise inputs are Gaussian, xg ~ N(um,l, P0|,1),
w ~ N (o, Xy) and vy ~ N(y, %), then the state has

a Gaussian posterior (z; | Yo,.-.,yt) ~ N (1, Pr), which
can be computed recursively via the celebrated Kalman filter
(KF). The two-step KF can be written as follows [17, §6.2].

o Time update:

Pyji1 =%, + AP, AT (4a)
Pefe—1 = Aptg—1 + o (4b)
o Measurement update:
Pt=P +CTEC (5a)
pir = pi—1 + BCT S (1 — Cpagge—1 — o) (5b)

D. The Fenchel Conjugate

The Fenchel conjugate of a function, also known as the
convex conjugate or simply conjugate, is defined as follows.

Definition 1: For a function g : R — R U {oco}, the
conjugate function ¢g* is defined as [18, §3.3]

g"(A) = sup (AT —g(2)).

Some useful properties: the conjugate g* is a always a convex
function, and if ¢ itself is convex, then ¢** == (¢*)* = g.

Proposition 1: Given a matrix M > 0, vector m and
scalar - of compatible dimensions, the conjugate of a convex
quadratic function is given as follows.

21T (M m] [z

1 mT | |1] then

N ~M~tm ] [A
1 —m M=t mTM " m—~||1|"
E. Dynamic Programming for MAP Estimation

It was recently observed by Lange [19] that MAP esti-
mators satisfy a Bellman-style recursion different from the
Bayesian recursion (2). We briefly review this result. Con-
sider the dynamical system (1). The MAP estimator for x;
given measurements o, . ..,y is found by maximizing the
log-posterior log P(xo.+ | yo.¢), Which is equivalent to max-
imizing the joint log-likelihood of the states and measure-
ments, denoted L(x¢.¢,yo.¢).! By the probability chain rule

If g(z) =

=N =

g (\) =

\V]

t ¢
Lo, your) = Lxo)+ > _ L | wia)+ Y Ly; | zi). (6)
i=1 i=0
Definition 2: The value function V; : R™ — R is the joint
negative log-likelihood minimized over past states

V;f(m) = _L(:L'O:tflvxayO:t)- (7)

min
LOje-eyTt—1

Using (6) and (7) we can obtain a Bellman-style recursion.

Lemma I (Bellman recursion): The value function given
in (7) satisfies the following forward recursion

Vile) = ~t(ye | )+ min { — €& | +Vira (). ®

IThis is the trajectory or batch MAP, which maximizes the conditional
distribution of the full state history. Some authors also consider the pointwise
or filtering MAP, which instead maximizes the conditional distribution of
the current state. One way to compute this pointwise MAP estimate is to use
the Bayesian update (2) but replace the expectation in (3) with an argmax.



In the Gaussian setting (see Section II-C) the value func-
tion is the convex quadratic

T
_ Lz P P [
N A T
where p; and P; > 0 are the mean and the covariance of the
posterior at time ¢. In this setting, the Bellman update (8),
just like the Bayesian update (2), reduces to the standard KF.

III. MAIN RESULTS

Our starting point is the Bellman recursion of Lemma 1.

A. Quadratic approximation

In this paper, we approximate the value function (7) with
a quadratic function of the form (9). The justification for
this approximation is that many log-PDFs resemble quadratic
functions near their modes [19]. Quadratic value functions
also reduce Bellman recursions to a pair of algebraic equa-
tions via the Fenchel dual, a fact observed in [20].

Lemma 2: Consider the linear system (1) with ¢(-) and
r(-) defined in Section II-B. If V; and V;_; are quadratic
functions of the form (9), then there exists a function
p(+) such that the Bellman recursion (8) simplifies to the
following pair of algebraic equations

p(z) + 7y — Cz) = % mT[Ptl _th.'l“t} m , (10a)

*

. ey LA T[AP- AT Ap | [

p(/\)—q(A)—QM { R T aob
Proof: See Section A. [ |

Corollary 1: In the setting of Lemma 2, if we further
assume the process noise is Gaussian with wy ~ N (py, Xy )s
then Eq. (10) simplifies to the single equation

TR

Trp-1 -1
_ % [ﬂ |:Ptt1 Ptltlutt—1:| ﬁ] +r(y — Cax),

*
(11

where Py;_1 and puy;—1 are given in (4).
Proof: See Section B. [ ]

B. Proposed Estimator

For the rest of this paper, we assume the process noise
is Gaussian, i.e., ¢ is quadratic, and use Corollary 1 to
derive our estimator. The more general case of non-Gaussian
process noise is left for future studies.

Our proposed estimator is based on using the quadratic
approximation for the value function described in Section III-
A, together with a specialized quadratic approximation of r.

We propose a quadratic approximation for r about a given
point v in the following sense. We choose the Hessian M.
of the approximation by fitting a quadratic whose gradient
matches that of r at v and whose vertex is at the minimizer of

r (the mode m,, of the measurement noise distribution). This
leads to the equation M,.(5—m,) = Vr (7). Among possible
choices of M,., we opt for the simple diagonal solution

= g 1720

Ui — M) (12)

where [z]; denotes the i component of the vector .

We require M, > 0, which will typically be true, but may
not be the case if the distribution is bimodal or has finite
support. For such cases, we make some sensible adjustments,
which we detail in Remarks 4 and 5. The complete quadratic
approximation therefore has the form

r(v) =~ %(v —my) | M, (v —m,) + (constant), (13)

with M, defined in (12). To approximate r(v) in (11) we
use U :— yp — Cluy4—1, yielding the approximation
T
1|z CT™M,C —C"M,(y; —my,)] [z
7(%_0”5)“2[1} [ * 1]
So, rather than approximating r(v) globally as in the standard
KF, we use an approximation that is more accurate near
our current estimate of v. Substituting the approximation of
r(ys — Cz) into (11) and simplifying yields our proposed
estimator, given below.
Proposed estimator. Given prior parameters fiy—1, P;—1
and new measurement y;, we find p;, P; via the updates

Py =3y + AP,_ AT (14a)
pefe—1 = Apt—1 + po (14b)
Pl =Pl +CTM,C, (14c)
pe = pje—1 + P.CTVr (), (14d)

with ¥ = yy — Ciy)e—1 and M, given in (12).

Remark 1: Since we assume Gaussian process noise,
Eqgs. (14a) and (14b) are the same as the time update (4) of
the standard KF. When the measurement noise is Gaussian
with a diagonal covariance matrix, Egs. (14c) and (14d)
reduce to the measurement update (5) of the standard KF.

Remark 2: Consider the optimization problem

mfin{;(g—utt1)TPt|t1_1(§—utt1)+7°(yt _C§>}7 (15)

where the objective is the negative log-posterior distribution
oy =& | your) = Lzt = & | Your—1) + Lyt | 24 = ). For
Gaussian process noise, the prior P(z; = £ | yo.t—1) is Gaus-
sian. Using our quadratic approximation for r(y, —C&) about
the point & = f14;—1 and substituting into (15), and solving
for ¢ yields a Newton-like update that precisely recovers our
estimator (14). One can envision other possible estimators
that perform multiple Newton-like steps per measurement,
or use different iterative schemes altogether.

Remark 3: Since our proposed approach is similar to a
Newton step (see Remark 2), one may be tempted to use
the second-order Taylor approximation M, = V?7(?) and
obtain an exact Newton step. However, Newton’s method is
prone to numerical issues when the Hessian is indefinite or
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Fig. 1: PDFs of measurement noise distributions used in our numerical experiments: (a) Skewed normal, (b) Bimodal Gaussian mixture, (¢) Gamma,
(d) Impulsive Gaussian mixture (on a log scale), (e) Cauchy, (f) Beta prime, (g) Exponential, and (h) Lévy distributions. Refer to Table I for exact PDFs.

nearly singular (as in bimodal or heavy-tailed distributions).
Anchoring the quadratic approximation to the mode of the
distribution as in (13) gives our estimator added robustness.

IV. DISCUSSION

Our estimator (14) has similar update equations to those
of the Masreliez estimator [11], which uses a score function.
However, the Masreliez estimator is fundamentally different
because it approximates the Bayesian update (2), while
our approach uses the Bellman update (8). The Masreliez
estimator directly approximates the posterior distribution as
a Gaussian, while we approximate the noise distribution at
each iteration based on the most recent state estimate. As
a result, our estimator is comparable to the standard KF
in terms of computational footprint, while the Masreliez
estimator is significantly more expensive. Specifically, in
the Masreliez filter, in order to compute the score function
at each timestep, the density of the predicted measurement
needs to be computed via convolution, i.e.,

Py | yort_1) = / Py, | o) P(es | your) dae,  (16)

where the prior P(z; | yo.t—1) is assumed to be Gaussian.
A common method to compute integrals of the form (16)
is Gauss—Hermite quadrature, which has the computation
complexity of O(s™), where s is the number of points
used to grid the integration domain. As a result, the total
complexity of the Masreliez estimator is O(n? + s™), while
the complexity of our method is O(n?3), which is the same as
the standard KF. As we will see in Section V, our estimator
has comparable performance to the Masreliez filter in terms
of RMSE, while requiring significantly less computation.

For a linear dynamical system with non-Gaussian noise,
the Kalman filter is the best linear unbiased estimator
(BLUE) [17, §5.2]. Our proposed estimator (14) is different
from a standard KF where noise is globally approximated
by a Gaussian. Rather, we use local approximations of the
noise distribution at each timestep, which leads to a nonlinear
estimator and improved empirical performance compared to
the standard KF (see Section V).

V. NUMERICAL EXAMPLES

We evaluated the performance of our proposed estimator
(14) on the following 2D rotational system [13]

Tie| _ |cos 15 —sin{g | |T1,-1 " w1t (17a)
Ty sinft cos 7| |w2,4-1 wa ]’
ye=[1 1]z +uv. (17b)

For the process noise, we used w; ~ N(0,0.0513). For
the measurement noise, we used v; ~ N (0,3) as our
baseline. We then tested a variety of measurement noise
distributions (see Fig. 1 and Table I). To ensure consistency
across experiments, our noise PDFs were adjusted so that
their first and second moments, matched those of the baseline
measurement noise whenever possible.

For each noise distribution, we performed 200 Monte
Carlo runs with different noise realizations, each time sim-
ulating (17) for 200 timesteps and reporting the mean and
standard deviation of the final RMSE and the geometric mean
of computation time. We compared our proposed estimator to
the standard KF, the Masreliez filter [11] and the MCKF [13].
We also ran a particle filter (PF), which served as a minimum
MSE baseline. For methods with tuning parameters, we
tried different tunings and chose the most performant one.
Specifically, for the PF we used 1000 particles and for
the MCKF we used a kernel size of 5. For the Masreliez
filter, the integral in (16) was evaluated numerically over
a domain spanning +5 standard deviations from the prior
estimate, discretized into a grid of 50 points. Estimators were
implemented in MATLAB and run on a conventional laptop.

Simulation results are shown in Table II. We observe
that our estimator outperforms the standard KF under all
measurement noise distributions, while having comparable
computation time. The Masreliez filter performs slightly
better than our estimator, however its computation time is
significantly higher than that of our proposed estimator.

With the exception of the standard KF, all the filters
we tested were nonlinear and provided little in the way of
theoretical guarantees, such as stability of the error dynamics.
Indeed, the Masreliez filter was found to diverge in certain
cases with heavy-tailed measurement noise.

A typical RMSE plot is shown in Fig. 2.

Remark 4: Special consideration is required when com-
puting M, for the bimodal distribution (b), as the Eq. (12)



TABLE I: Various noise distributions used in numerical experiments. All distributions are configured to share a common mean and variance whenever
possible. In this table, ¢(-) and ®(-) represent the PDF and cumulative distribution function (CDF) of a standard Gaussian distribution, respectively.
Furthermore, I'(-) and B(-, -) denote the gamma and beta functions, respectively. These PDFs are plotted in Fig. 1.

Noise type Skew normal (a) Bimodal (b) Gamma (c) Impulsive (d)
) 1 )
- 2 4 (2=¢ —¢ 2oz -1 - 2oz
Noise PDF 2p(=5)o(a 255) S s o( ) g exp( ) S i o ()
£ = —2.0063 a1 =04  ay;=06 o2 a1 =01 ay=09
Parameters w = 2.6505 p1=—-18 puz2=12 N u1 =0 p2 =0
a=3 02=09 (=08 0=3/2 0?2 =25 o%=0.5556
Noise type Cauchy (e) Beta prime (f) Exponential (g) Lévy (h)
1 a—=1(1 —a—p Ty
Noise PDF e Eai ) Aexp(—Az) C/(237;>2 exp( —< )
m (x —x0)2 +~2 B(a, B) (z—p) 2(z—p)
Parameters zo0=0 =1 a=2 [f=27891 A=1/V3 w=1 c=3
— Proposed — KF — MCKF — Masreliez — PF . . . A . .
highlighting its practical effectiveness. Moreover, our pro-
] posed estimator is computationally efficient, requiring only
modest overhead compared to the standard Kalman Filter.
| The estimator designed in this paper was for systems with
Gaussian process and non-Gaussian measurement noise. One
immediate extension is to use Lemma 2 to derive estimators
i for cases in which the process noise is also non-Gaussian.
Another future direction is generalizing Lemma 2 to derive
5'0 . 6 0 ) 5 0 500 smoothers and predictors based on the Bellman recursion (8),
Time step or to generalize our work to nonlinear dynamical systems

Fig. 2: Performance of the proposed estimator (14) compared with a variety
of estimators under Gaussian process noise and impulsive measurement
noise (Item (d) in Fig. 1 and Table I). We plot the mean RMSE of 1000
trials. The shaded area shows the 95% confidence interval for the mean.

assumes a single mode. To resolve this ambiguity, we use
the direction of the gradient at ¥. When v is between the
two modes, for each 7, we choose m, to be the mode such
that [Vr(0)];/(0; — [my];) > 0, thus ensuring M, > 0.

Remark 5: For distributions with compact support, when-
ever v falls outside of the valid domain, we perform a
projection with e-margin. For example, the support of the
Lévy distribution is (p, 00). Thus, we use o = max(7, u+e),
where € is a vector of small positive entries.

Code to generate all figures and tables can be found here:
https://github.com/QCGroup/dpkf.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied MAP estimation for linear
systems under non-Gaussian noise from an optimization
perspective. We showed that while the general Bellman
recursion for MAP estimation does not have a closed-
form solution, it can be reduced to algebraic equations via
approximation of the value function. To locally approximate
noise distributions, we introduced a novel robust quadratic
approximation. These results were then leveraged to design
a nonlinear state estimator under Gaussian process and non-
Gaussian measurement noise. Simulations demonstrated that
our proposed estimator outperformed the standard KF and
had comparable performance to state-of-the-art estimators,

and develop analogs of the extended or unscented Kalman
filter. Finally, more extensive numerical and theoretical anal-
yses are needed to better characterize the performance and
limitations of our proposed estimator.

APPENDIX

A. Proof of Lemma 2

Substituting the approximation (9) for V; and V;_; and
Uy, | z) = —r(y — Cz) and £(z | ) = —q(z — AE) into
the Bellman recursion (8), we obtain

Tr o1 .
; m [Pi e t] m = r(y — Cx)
T — _
+min g g(z — Ag) + % m {Pt*—ll _Pt.—Tl.,ut—l] [ﬂ
(18)

We then define

o= 1] [ ] v

which rearranges to (10a). Expressing (18) in terms of p(z),
() = min < q(z — AE) -i-1 ¢ ! Py =P [
b 3 ¢ 211 * e 1

Taking the conjugate of both sides via Definition 1 and
simplifying, we obtain (10b), which completes the proof. B


https://github.com/QCGroup/dpkf

TABLE II: Simulation results for the system (17) with Gaussian process noise and various measurement noise distributions (see Fig. 1 and Table I). We
report the mean and standard deviation of the RMSE over 200 Monte Carlo runs, and the geometric mean runtime, normalized so that KF = 1.00.

Skewed normal (a) Bimodal (b) Gamma (c) Impulsive (d)
Estimator RMSE =+ s.d. Time RMSE = s.d. Time RMSE =+ s.d. Time RMSE = s.d. Time
KF 0.213 4+ 0.050 1.00 0.217 + 0.051 1.00 0.213 + 0.045 1.00 0.212 £ 0.048 1.00
MCKF 0.212 + 0.050 6.45 0.318 + 0.064 6.63 0.212 £ 0.045 6.48 0.191 £+ 0.043 8.20
Masreliez 0.206 4+ 0.049 56.48 0.202 + 0.045 39.87 diverged — 0.173 £ 0.038 37.28
Ours (14) 0.205 + 0.049 0.93 0.209 + 0.048 1.47 0.198 £ 0.043 0.82 0.177 £ 0.038 1.34
PF 0.205 + 0.049 63.67 0.201 + 0.045 65.27 0.191 + 0.041 76.02 0.173 £ 0.038 62.95
Cauchy (e) Beta prime (f) Exponential (g) Lévy (h)
Estimator RMSE = s.d. Time RMSE =+ s.d. Time RMSE = s.d. Time RMSE = s.d. Time
KF N/A — 0.204 + 0.048 1.00 0.212 £ 0.049 1.00 N/A —
MCKEFET N/A — 0.201 + 0.047 6.82 0.206 + 0.046 8.90 N/A —
Masreliez 0.216 + 0.047 28.49 diverged — diverged — diverged —
Ours (14) 0.228 4+ 0.052 1.00 0.184 +0.043 0.92 0.203 £ 0.050 0.90 0.254 £ 0.058 1.00
PF 0.216 4+ 0.048 51.71 0.156 + 0.034 80.25 0.177 + 0.040 77.73 0.242 + 0.053 76.88

T MCKF’s derivation assumes finite noise covariance, which is undefined for Cauchy and Lévy distributions. In practice, one can still use it in these cases,

but it requires manually tuning a nominal covariance parameter.

B. Proof of Corollary 1
Since w ~ N (pty, X)) we have

= 1(w — ptw) " S (w — 1) 4 (constant).  (19)

2
Taking the conjugate of (19) using Proposition 1 we get

q(w)

T
* _ 1A Zw M A
co=z )i [T R e
Substitute (20) into (10b) and use (4) to obtain
T
* _ 1A Pt\tfl Ht|t—1 A
p(A)—QM { T R
Taking the conjugate of (21) using Proposition 1 yields
T -1 -1
1| Pt _ —P _1Mtjt—1]| (T
_ - [t—1 tlt—1
p(@) QM [ x - @
Substituting (22) into (10a) yields (11), as required. |
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