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Abstract

The theory of integral quadratic constraints (IQCs) al-
lows verification of stability and gain-bound properties
of systems containing nonlinear or uncertain elements.
Gain bounds often imply exponential stability, but it
can be challenging to compute useful numerical bounds
on the exponential decay rate. In this work, we present
a modification of the classical IQC results of Megretski
and Rantzer [13] that leads to a tractable computational
procedure for finding exponential rate certificates. We
demonstrate the effectiveness of our method via a nu-
merical example.

1 Introduction

In robust control problems, we seek absolute performance
guarantees about a system in the presence of bounded un-
certainty. Examples of such results include the small gain
theorem & passivity theory [20], dissipativity theory [19],
and integral quadratic constraints (IQCs) [13].

In this paper, we present a modification of IQC the-
ory, the most general of the aforementioned tools, that
allows one to certify exponential stability rather than just
bounded-input bounded-output (BIBO) stability. More-
over, we can compute numerical bounds on the exponen-
tial decay rate of the state.

Even when BIBO stable systems are exponentially sta-
ble, the estimates of the exponential decay rates provided
by standard IQC theory are typically very conservative.
We will show that this conservatism can be greatly re-
duced if we directly certify exponential stability and use
the method presented herein to compute the associated
decay rate.

Our modified IQC analysis was successfully applied
in [12] to analyze convergence properties of commonly-
used optimization algorithms such as the gradient de-
scent method. These algorithms converge at an expo-
nential rate when applied to strongly convex functions,
and the modified IQC analysis automatically produces
very tight bounds on the convergence rates.

Another potential application is in time-critical ap-
plications such as embedded model predictive control,
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where it is vital to have robust guarantees that the de-
sired error bounds will be achieved in the allotted time
without overflow errors and in spite of fixed-point arith-
metic. See [8] and references therein.

A special case. As previously noted, exponential sta-
bility certificates are often conservative when they are
derived from L, gain bounds. However, it is well known
that exponential stability can be proven directly in some
special cases. To illustrate this fact, consider a discrete
linear time-invariant (LTI) plant G with state-space real-
ization (A, B,C, D). Suppose G is connected in feedback
with a passive nonlinearity A. A sufficient condition for
BIBO stability is that there exists a positive definite ma-
trix P > 0 and a scalar A > 0 satisfying the linear matrix
inequality (LMI)
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If we define V(x) := 27 Pz, then (1) implies that V de-
creases along trajectories: V(zpi1) < V(xg) for all k.
BIBO stability then follows from positivity and bound-
edness of V. But observe that when (1) holds, we may
replace the right-hand side by —eP for some ¢ > 0
sufficiently small. We then conclude that V(zgi1) <
(1 — &)V (x) for all k and exponential stability follows.
We can then maximize € subject to feasibility of (1) to
further improve the rate bound.

Unfortunately, the simple trick shown above does not
work in the general IQC setting due to the different role
played by P in the associated LMI. The LMI used in
IQC theory comes from the Kalman-Yakubovich-Popov
(KYP) lemma and although it is structurally similar
to (1), P is not positive definite in general and V may
not decrease along trajectories.

Our key insight is that with a suitable modification
to both the LMI and the IQC definition, we obtain a
condition that can certify exponential stability.

The paper is organized as follows. We cover some re-
lated work in the remainder of the introduction, we ex-
plain our notation and some basic results in Section 2,
we develop and present our main result in Section 3, and
we discuss computational considerations in Section 4. Fi-
nally, we present an illustrative example demonstrating
the usefulness of our result in Section 5, and we make
some concluding remarks in Section 6.



Related work. It is noted in [13, 15] that BIBO sta-
bility often implies exponential stability. In particular,
we get exponential stability if the nonlinearity satisfies
an additional fading memory property. The proof of this
result is chiefly concerned with showing existence of an
exponential decay rate. Although the proof constructs
an exponential rate, the construction is based on the as-
sumed Lo gain of the linear map, and thus can be very
conservative.

Other proofs of exponential stability have appeared in
the literature for specific classes of nonlinearities. Some
examples include [4, 11], which treat sector-bounded non-
linearities, and [9], which treats nonlinearities satisfying a
Popov IQC. These works exploit LMI modifications akin
to the one shown with (1) earlier in this section.

The sequel is inspired by the recent paper [12], which
presents an approach for proving the robust exponential
stability of optimization algorithms. The approach of [12]
uses a time-domain formulation of IQCs modified to han-
dle exponential stability. In contrast, the present work
develops the aforementioned exponential stability modi-
fication entirely in the frequency domain and clarifies its
connection to the seminal IQC results in [13].

2 Notation and preliminaries

We adopt a setup analogous to the one used in [13], with
the exception that we will work in discrete time rather
than continuous time. The conjugate transpose of a vec-
tor v € C" is denoted v*. The unit circle in the complex
plane is denoted T := {z € C | |z] = 1} The z-transform
of a time-domain signal = := (zg, 1, ...) is denoted &(z)
and defined as (2) := Y o zpz "

A Hermitian positive definite (semidefinite) matrix M
is denoted M > 0 (M > 0). Function composition is de-
noted (go f)(x) := g(f(z)). A sequence u = (ug,uq,...)
is said to be in £y if Y 7o Jug|? < co. A sequence uy is
said to be in £4 for some p € (0, 1) if the sequence (p~*uy,)
isin fo, ie. D po g p 2Flug|? < oo. Note that £5 C £5. Let
RHZ*™ be the set of m x n matrices whose elements are
proper rational functions with real coefficients analytic
on the closed unit disk.

Consider the standard setup of Fig. 1. The block G
contains the known LTI part of the system while A con-
tains the part that is uncertain, unknown, nonlinear, or
otherwise troublesome. The interconnection is said to be
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Figure 1: Linear time-invariant system G in feedback
with a nonlinearity A.

well-posed if the map (v,w) — (e, f) has a causal in-
verse. The interconnection is said to be BIBO stable if,
in addition, there exists some v > 0 such that when G is
initialized with zero state,

ol + llwll < v (llell* + 1£1%)

for all square-summable inputs f and e, and where |||
denotes the /5 norm. Finally, the interconnection is ex-
ponentially stable if there exists some p € (0,1) and ¢ > 0
such that if f = 0 and e = 0, the state x; of G will decay
exponentially with rate p. That is,

lzk]| < ¢p® ||lzol|  for all k.

We now present the classical IQC definition and sta-
bility result, which will be modified in the sequel to guar-
antee exponential convergence. These results are the
discrete-time analog of the main IQC results of Megretski
and Rantzer [13].

Definition 1 (IQC). Signals y € {3 and u € {5 with
associated z-transforms §(z) and 4(z) satisfy the 1QC
defined by a Hermitian complex-valued function II if

[ 2] e [5)] = 0. 2

A bounded operator A satisfies the IQC defined by 11
if (2) holds for all y € fy with u = A(y). We also
define IQC(II(2)) to be the set of all A that satisfy the
1QC defined by II.

Theorem 2 (Stability result). Let G(z) € RHL" and
let A be a bounded causal operator. Suppose that:

i) for every T € [0,1], the interconnection of G and TA
is well-posed.

it) for every T € [0,1], we have TA € IQC(II(2)).

iii) there exists e > 0 such that

o mafo]o ver

Then, the feedback interconnection of G and A is stable.

3 Frequency-domain condition

In this section, we augment Definition 1 and the clas-
sical result of Theorem 2 to derive a frequency-domain
condition that certifies exponential stability.

Definition 3. The operators p4, p— are defined as the
time-domain, time-dependent multipliers p*, p=F, respec-

tively, where p € (0,1) is a defined constant.

Remark 4. The operator p_ o (G(z) o py) is equivalent
to the operator G(pz). This follows from the fact that,
for any constant a > 0 and signal uy, the z-transform of

a~*uy, is given by 4(az). See Fig. 2 for an illustration.
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Figure 3: Modified feedback diagram with additional
multipliers and inputs. For appropriately chosen e and f
and with zero initial condition, we show how this diagram
is equivalent to that of Fig. 1.

In order to show exponential stability of the system in
Fig. 1, we will relate it to BIBO stability of the modi-
fied system shown in Fig. 3. This equivalence is closely
related to the theory of stability multipliers [16].

Proposition 5. Suppose G(z) has a minimal realization
(A, B,C, D). If the interconnection in Fig. 3 is stable
with zero initial condition, then the interconnection in
Fig. 1 with initial state xq is exponentially stable.

Proof. Intuitively, if v and w are small in the BIBO
sense compared to e and f, then y must be even smaller.
See [1] for a detailed proof. |

Ideally, we would like to find a suitable redefinition of
the IQC for this transformed system shown in Fig. 3. To
this end, we introduce the concept of the p-IQC.

Definition 6 (p-IQC). Signals y € (5 and u € 5 with
associated z-transforms §(z) and 4(z) satisfy the p-IQC
defined by a Hermitian complex-valued function 11 if

17(02)] ) [@(pZ)]

- 1I ~ dz>0. 3
/ {u@z) (02) |a(pz)| %2 2 )
A bounded operator A satisfies the p-1QC defined by 11
if (3) holds for all y € €5 with u = A(y). We also define

IQC(II(z), p) to be the set of all A that satisfy the p-1QC
defined by II.

Note that the concept of a p-IQC generalizes that of a
regular IQC. Indeed, we have IQC(II(z), 1) = IQC(II(z)).
The restriction of u € ¢§ and y € ¢4 corresponds to the
restriction of u € ¢3 and y € {5 in the classical definition
of IQC [13]. Now equipped with p-IQCs, we can relate
A’ in Fig. 3 to A in Fig. 1.

Proposition 7. Let A be a nonlinearity, and let I be a
Hermitian complez-valued function. As in Fig. 3, define

A :=p_o(Aopy). Then the following statements are
equivalent.

(1) A € 1IQC(II(z), p)
(i) A" € IQC(I(pz))

Proof. We define the discrete Fourier transform of the
input and output of A as g(z) and 4(z), respectively.
Then, from the definition of p; and p_, we have that
w(z) = (pz) and v(z) = y(pz). Substituting into the
IQC definition (2), we obtain (3) as required. ]

Proposition 7 is illustrated in Fig. 4.
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Figure 4: Illustration of Proposition 7.

We now state our main result, an exponential stability
theorem analogous to the classical result in Theorem 2.

Theorem 8 (Exponential stability). Fiz p € (0,1). Let
G(pz) € RHZ*™ and let A be a bounded causal operator.
Suppose that:

i) for every T € [0,1], the interconnection of G and TA
is well-posed.

i) for every T € [0,1], we have TA € IQC(II(2), p).

iii) there exists € > 0 such that
[G(Ipz)} I(pz) {G(If’z)} <—el, VzeT. (4)

Then, the interconnection of G and A shown in Fig. 1 is
exponentially stable with rate p.

Proof. Roughly, we apply Theorem 2 to the interconnec-
tion in Fig. 3 with operators G’ and A’ and IQC II(pz).
See [1] for a detailed proof. ]

4 Computation

As in the classical IQC setting, to guarantee stability, the
frequency-domain inequality (FDI) (4) must be verified
for every w € [0, 27). However, if the IQC in question ex-
hibits a factorizaton, then the discrete-time KYP Lemma
can be applied to convert the infinite-dimensional FDI to
a finite-dimensional LMI. We now review these results.

Definition 9. We say II has a factorization (¥, M) if
II(z) = V()" MY(z),

where W is a stable linear time-invariant system, M is a
constant Hermitian matriz, and W(z)* denotes the con-
Jugate transpose of W(z).



Remark 10. If II(2) has a factorization (¥, M) and
U(pz) is stable, then (3) is equivalent to

Zp_%z,IMzk >0, wherez: =W (y) .
k=0 Y
This follows immediately from Parseval’s theorem.
The KYP lemma, stated below, is attributed to
Kalman, Yakubovich, and Popov. A simple proof and
further references can be found in [14].

Lemma 11 (Discrete-time KYP Lemma). Given matri-
ces A, B and a Hermitian matriz M, and assuming A
has no eigenvalues on the unit circle, the FDI

{(z[ —}4)—13] . M {(21 — ?)—13} ~0

holds for all z € T if and only if there exists a solution
P=P" and A\ > 0 to the LMI

T
A B P 0 A B
7o 18 Sl o] eae<o,
Corollary 12. Suppose the realization of G is given by
(A,B,C, D) and assume II has a factorization (¥, M),
where the realization of V is given by
Aq; ‘ Bq;l B\I;2
Cy | Dy, Du,
Then (4) is equivalent to the existence of P = PT and
A > 0 such that
ATPA—p*P ATPB \ cT
BTPA BTPB DT
where (A,B,C’,ﬁ) are given by

U =

]M[C‘ D] <0 (5)

P A 0 B
2 g = Bq;lc Ay qu2 + B‘Ile
Dy,C Cy | Dy, + Dy, D
Proof. Omitted. A similar result is proven in [18]. m

With the advent of fast interior-point methods to solve
LMIs, the feasibility of the LMI (5) can be quickly ascer-
tained for any fixed p?. Since the size of the LMI is on
the order of the size of the system G and the IQC II, most
practical linear systems lead to relatively small LMIs.

Finding the best upper bound amounts to minimiz-
ing p? subject to (5) being feasible. This type of prob-
lem occurs frequently in robust control and is known as a
generalized eigenvalue optimization problem (GEVP) [3].
The GEVP is not an LMI because (5) is not jointly linear
in p? and P. One simple approach to solving the GEVP
is to perform a bisection search on p?, but there are more
sophisticated methods available; see for example [2].

Remark 13. These results may also be carried through
i continuous time. In that case, an equation analogous
to (4) must be satisfied for G(s — A\) for all w € [0,00),
and can be verified by finding P = PT, A > 0 such that
AT A 3 AT
ATP+ PA-2)\P PB} A [C’

ATp 0 [)T] M[C D]=<0

5 Examples

In this section, we show some classes of nonlinearities
that can be described by p-IQCs and therefore used in
Theorem 8 to prove robust exponential stability of an
interconnected system. In the case where p = 1, these
p-1QCs reduce to standard IQCs [13]. This class of IQCs
will be constructed for SISO systems, but they may be
adapted for square MIMO systems where the nonlinear-
ity is of the form diag({A}) for a scalar A, with little
modification.

5.1 Pointwise IQCs

A nonlinearity A satisfies a pointwise IQC with a factor-
ization (WU, M) if z] Mz, > 0 for each k. In other words,
the IQC holds pointwise in time. In this case, A also
satisfies the associated p-IQC for all p < 1. Examples of
pointwise IQCs include the v norm-bounded IQC

2
_ | 0
-y )
and the [«, 8] sector bounded IQC, given by
|20 a+p
= {a +5 =2 } )

Note that the norm-bounded IQC is a special case of the
sector IQC with the sector [—,7]. These IQCs hold even
if A is time-varying.

5.2 Zames-Falb IQCs

A nonlinearity A is slope-restricted on [, 5] where 0 <
a < B if the following relation holds for all z, y.

(Alz)— Aly) —a(z—y)) (A(x) - Aly) - Bz —y)) <O0.

This relation states that the chord joining input-output
pairs of A has a slope that is bounded between « and S.
This class of functions satisfies the so-called Zames-Falb
family of IQCs [7, 21]. We give the definition below.

Proposition 14. A nonlinearity A that is static and
slope-restricted on [, 8] satisfies the Zames-Falb I1QC

—af(2—H—H*) «o(l-H)+p(1-H*) (6)
(1-H*)+p(1—H) —(2—H-H*)
where H(z) is any proper transfer function with impulse

response h = (hg,h1,...) that satisfies ||h||l1 < 1 and
hix >0 for all k.

II =
(0%

Proof. See for example [7]. n

Remark 15. The Zames-Falb IQC (6) admits the fac-
torization
(1H)] and M — {0 1}

p(1—H)
10

V= -« 1

In general, for a given fixed p, only a subset of the
Zames-Falb IQCs will be p-IQCs. We now give a charac-
terization of this subset.



Theorem 16 (Zames-Falb p-IQC). Suppose A is static
and slope-restricted on [, f]. Then A € IQC(II(2), p)
where I is the Zames-Falb IQC (6) and H satisfies the
additional constraint

> pFhe <1 (7)

k=0

Proof. Omitted. See [1] for a detailed proof. |

5.3 Multiple IQCs

Much like how multiple IQCs can give more precise Lgy
gain bounds, multiple p-IQCs can give more precise con-
vergence rates. We present numerical examples with
both pointwise and dynamic p-IQCs. Consider a sta-
ble discrete-time LTI system G(z) in feedback with the
sigmoidal nonlinearity A(x) = barctan(z). This inter-
connection is shown in Fig. 5.

G

K=

Figure 5: LTI system G in feedback with the static non-
linearity A(x) = barctan(z).

Since this nonlinearity is static, in the [0, b] sector, and
[0, b] slope-restricted, it satisfies the following p-IQCs

M2
I, (2) := bO _OJ (norm-bounded) (8)
Iy(2) :== 2 _bz} (sector bounded) (9)
_ 0 b(1 — p*Fz7F)
My (z) := _b(l—p%z k) _2+p2k(z—k+2—k)

(off-by-k Zames-Falb)  (10)

where we can choose any k =1,2,....

A tight bound. For our first example, we analyzed
the following LTI system!

(z4+1)(10249)
(22 = 1)(5z — 1)(10z — 1)

We solved the feasibility LMI (5) using MATLAB to-
gether with the CVX package [5, 6] to find the fastest
guaranteed rate of convergence. We searched over posi-
tive linear combinations of subsets of the IQCs (8)—(10).
Fig. 6 shows the rate bounds achieved as a function of
which IQCs were used. For the particular choice b = 1,
Fig. 7 shows sample state trajectories.

Gi(z) = —

(11)

I This example was inspired by the continuous time example given
in [17], which showed that adding more IQCs yields better Lo
gain bounds.

The true exponential rate can be found by lineariz-
ing the system about its equilibrium point. Namely,
A(z) = bz. Formally, this is an application of Lyapunov’s
indirect method [10, Thm. 4.13]. The result is that the
decay rate should correspond to the maximal pole mag-
nitude of the closed-loop map G(z)/(1 —bG(z)). We dis-
play the true exponential rate as the dashed black curve
in Fig. 6 and Fig. 7.

For this example, the p-IQC approach yields a tight
upper bound to the true exponential rate when we use a
combination of the sector and off-by-1 IQCs.

1
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Figure 6: Upper bounds on the exponential convergence
rate p for the system G(z) given in (11) in feedback as
in Fig. 5. A tight bound is achieved using two p-IQCs.
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Figure 7: State decay over time of the system G1(z) in
feedback as in Fig. 5 with b = 1 for various initial condi-
tions z¢ € [—15,15]. The dashed black line is p*, where
p = .7058 is the true rate at b =1 in Fig. 6.

A loose bound. The p-IQC approach does not always
achieve tight bounds as in the previous example. Con-
sider the same problem as before but this time using
2z -1

@2(2) = ez =11
The rate bounds for various p-IQCs are shown in Fig. 8.
This time, we again observe that using more IQCs
achieves better rate bounds, but the bound is not tight
even after using six 1QCs.

(12)
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Figure 8: Upper bounds on the exponential convergence
rate p for the system G3(z) given in (12) in feedback as
in Fig. 5. As we include more p-IQCs, we can certify
tighter bounds.

6 Conclusion

We presented a modification of IQC theory that allows
the certification of exponential rates. Although we only
gave the p-IQC specialization for pointwise and Zames-
Falb IQCs, the concept can in principle be extended to
other IQCs such as, for example, uncertain time delays or
slowly varying systems [13]. As the dictionary of p-IQCs
is further populated, the applicability of the technique
outlined herein would be correspondingly expanded.
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