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Abstract

State-space formulas are derived for the minimum-
entropy Heo controller when the plant and controller are
constrained to be block-lower-triangular. Such a con-
troller exists if and only if: the corresponding unstruc-
tured problem has a solution, a certain pair of coupled
algebraic Riccati equations admits a mutually stabiliz-
ing fixed point, and a pair of spectral radius conditions
is met. The controller’s observer-based structure is also
discussed, and a simple numerical approach for solving
the coupled Riccati equations is presented.

1 Introduction

Entropy minimization may be thought of as link between
the popular Hs and H, performance measures. Given a
stable matrix transfer function (MTF) F(s), the entropy
with tolerance v > 0 is defined as

2 oo

Z,(F):= log ‘det(] — Y2 F(jw)* F(jw)) | dw

(1)
A key property of entropy is that Z,(F) is finite if and
only if [|[Flloc < 7. So entropy may be used as a sur-
rogate for the H ., norm when searching for suboptimal
controllers with a prescribed performance . Entropy is
also related to the Ho performance measure in the limit
lim, o0 Z, (F) = || 3.

The focus of this paper is a structurally constrained
version of the standard H., control problem whereby a
given sparsity pattern is imposed on the controller. Such
constraints arise in decentralized control; rows of the con-
troller MTF K may be thought of as separate controllers
and the constraint ;; = 0 means that controller ¢ does
not measure measurement j.

— 5 .

The plant and controller are continuous linear time-
invariant systems described by the equations
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where z and w are the regulated output and exogenous

input, and y and u are the measurement and controlled
input, respectively. Poy and K are assumed to each have

and u =Ky
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a 2 x 2 block-lower-triangular sparsity structure with con-
forming dimensions. That is:
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where G;; is a strictly proper rational k; x m; MTF and
Kij is a proper rational m; x k; MTF. The closed-loop
map w — z found by eliminating K is given by

| x|

Ter == P11 + P1oK(I — Paak) ™ Poy (3)

The main problem statement is given below.

Min-entropy H., two-player problem (METP)
Given a plant P defined as above, find a controller
satisfying the following four requirements

(R1) K stabilizes P.
(R2) The closed-loop map satisfies ||7ee||co < 7-
(R3) The entropy Z,(7¢¢) is minimized.

(R4) K has the triangular structure (2).

Requirements (R1)—(R2) describe the standard H,
control problem. Existing approaches include the sem-
inal work by Doyle, Glover, Kargonekar, and Francis
(DGKF) [1], and the linear matrix inequality (LMI) ap-
proach by Gahinet and Apkarian [4]. It was shown that
the DGKF controller also minimizes entropy [5], as in
(R3). The risk-sensitive approach of Whittle [14] is also
closely related to the entropy formulation. In the limit
v — 00, (R1)—(R3) reduce to the standard Hs optimal
control problem. These various approaches and their in-
terpretations are well covered in many modern texts on
robust control. See for example [2, 15].

The structural constraint (R4) complicates the prob-
lem substantially. While the associated optimization may
still be convexified [9, 10], it remains infinite-dimensional
and there is no obvious way to find closed-form solutions.
Nevertheless, METP was solved in the limiting Hs case
by Lessard and Lall [7, 8]. In related work [12, 13], the
‘Ho case was solved under the further assumption of noise-
free state measurements (full-state feedback).

Unlike the limiting Ho case, METP for a general
does not become appreciably simpler under full-state
feedback assumptions. The only existing solution to the



general METP is by Scherer [11], and uses an LMI ap-
proach reminiscent of [4] together with a more general
elimination lemma. The solution presented herein is com-
pletely different from [11] and may be thought of as a
generalization of [1, 8] in that explicit formulas for the
optimal controller are found. Both approaches are fur-
ther compared in Section 3.

In the remainder of this section, a summary of notation
and conventions is given. The main result and a short
discussion are presented in Section 2. Implementation
details are given in Section 4, and an outline of the proof
is given in Section 5.

Common sets and operators. Let R and C denote
the real and complex numbers respectively. ZT and Z*
denote the transpose and conjugate transpose of Z, res-
pectively. 7(Z) is the maximum singular value and p(A)
is the spectral radius. The imaginary axis is jR. Let
L5 (jR) be the set of functions F : C — C™*™ such
that the integral

1 o0
I F|3 = %/ trace(}'(jw)*]:(jw))dw

is bounded. The subspace Hy'*"(jR) C L3 (jR) de-
notes the functions that are analytic in the open right-
half plane. The shorthand Hs and L5 is used for brevity.
The sets Hoo and L, are similarly defined, but with

| F|loo := esssup 5(]-"(jw))
w€eR

Let R, be the set of proper rational transfer matrices.
Every G € R, has a state-space realization

AlB =D+ C(sI - A)'B
clp |~ °

If this realization is chosen to be stabilizable and de-
tectable, then G € H if and only if A is Hurwitz,
and G € Hs if and only if A is Hurwitz and D = 0.
For a thorough introduction to these topics, see [15].

g =

Structured matrices. The following notation is used
to specify block-lower-triangular matrices.

lower (S, m,n) := { {?11 XO ]
21 X22

For such block matrices, also define

me=li] m=[od] mef] eefi ]

where the block dimensions are to be inferred by context.
For example, if A € lower(S, m,n), then EJ AE; = Ay
and AEQAT = EQAQQA—ZI—QE;.

Xij € Smixnj}

A Hamiltonian is a matrix of the form

A R
i-[% ]

Hamiltonians.

where A is square and R and ) are symmetric. If H
has no eigenvalues on the imaginary axis, and satisfies
the complementarity property [1, 15|, then H is in the
domain of the Riccati operator, written H € dom(Ric).
In this case, the associated algebraic Riccati equation
(ARE) ATX + XA+ Q+ XRX = 0 has a unique solution
such that A + RX is Hurwitz. This stabilizing solution
is denoted X = Ric(H), and it is always symmetric.

2 Main result

Suppose the plant P € R, has the state-space realization

b A| B B
{Pi P;j B D A @
Cy | Doy 0

in which the matrices A, By, C5 have the structure

A € lower(R,n,n), By € lower(R,n, m),

)
and Cs € lower(R, k,n). (5)

This ensures that Py has the requisite block-lower-
triangular structure (2). The converse is also true; when-
ever Pag satisfies (2), a realization satisfying (5) can be
readily constructed [6, 9]. Tt is further assumed that A;;
and Ass have non-empty dimensions. This avoids trivial
special cases and allows for more streamlined results.

Finally, the same assumptions as in [1] are made on
P22 in order to simplify the presentation.

(A1) (A, By) is stabilizable and (C4, A) is detectable
(A2) (A, By) is stabilizable and (Cy, A) is detectable
(43) DL, [C: D] = [0 1]
(A4) Dy [Bir DL] = [O I]

As in [1], define the Hamiltonians

He — A Y 2B1B] — B;B]

X = —C'lTC'1 _AT (6)
He — AT V*QClTCl — C;—CQ

Y7 |-BBf —A

For reference, recall the state-space solution of the classi-
cal H problem stated below as Theorem 1. Throughout
this paper, we refer to the classical problem as centralized
or unstructured, to distinguish it from METP.

Theorem 1 (DGKF [1]). Suppose P € R, satisfies (4)
as well as Assumptions (A1)—(A4). There exists a con-
troller that satisfies (R1)—(R3) if and only if

(B1) Hx € dom(Ric), and X := Ric(Hx) >0
(B2) Hy € dom(Ric), and Y := Ric(Hy) >0

(B3) p(XY) <~



When these conditions hold, one such controller is

A|—-ZL

Kcen = K 0

where the following definitions were used.
A:= A+ ByK +ZLCy +~"2BBI X
Z:=T—-~2yXx)! (8)
K:=-BJX and L:=-YC]

The solution to the structured Hso problem involves
a new pair of Hamiltonians. For any Y > 0 such that
p(XY) < ~2, define

- A
JX(Y) = _KTEIK

where the following definitions were used.
Ax := A+ ByE*K + Z LCy + 4 2B BT X
Rx :=~"2(B\B] + Z,LL"Z]) — B,E*B]
L= —?C;El and Zp = (I — ’V_QYX)_l

R
- j} (9)

(10)

Note that Zy, is invertible because p(XY) < 42, Simi-
larly, for any X > 0 such that p(XY) < 2, define

@)= | ) (1)
where the following definitions were used.
Ay := A+ BoK Zi + LE*Cy +472YCT Oy
Ry :==~"2(C]C1 + ZL K"K Zg) — CJ E'Cy (12)

K:=—E’BJX and Zg:=(I—-~"2vX)"!
Note that the Hamiltonians Jx and Jy are of the stan-
dard H, type just like Hx and Hy. That is, the con-
stant term is positive semidefinite, while the quadratic
term may be indefinite. The main result is given below.

Theorem 2. Suppose P € R, satisfies (4)—(5) as well
as Assumptions (A1)—(A4). There exists a controller
that solves METP if and only if

(C1) Conditions (B1)—~(B3) hold. In other words, the
unstructured version of the problem has a solution.

(C2) There exists X and Y such that

Jx(Y) € dom(Ric), and X — X = Ric(Jx(Y)) >0
Jy (X) € dom(Ric), and Y —Y = Ric(Jy (X)) > 0
where both p(XY) <2 and p(XY) < 2.
When these conditions hold, one such controller is
Ay 0 |-Z.L
Kme = BQ(K — KZKZ”) A2 —L (13)
K-KZxZ™'  KZx| 0
where

Ay = A+ BoK + Z,LCy + 7 ?B1B/ X
Ay = A+ BoKZy + LCy, + 42V CT Oy
and K, K, L, L, Z, Zx, Zy, are defined in (6)—(12).

An outline of the proof is provided in Section 5. An
immediate concern with Theorem 2 is that there is no ob-
vious way to verify condition (C2), as it requires solving
two intricately coupled AREs. This point is discussed
extensively in Section 4, where an efficient numerical
method is proposed that can be used to find a fixed point
when it exists. In the remainder of this section, some
salient features of the optimal controller are discussed.

Coordinates. Let £ be the state used in the realization

of the optimal unstructured controller (7) in Theorem 1.

If the state ¢ := Z~1¢ is used instead, the following dual

realization is obtained.

A+ ByKZ + LCy, +y7*YCTCy | —L
KZ |0

Icccn = (14)
Likewise, there are many possible coordinate choices for
representing the optimal structured controller (13).

In the closely related treatment of risk-sensitive opti-
mal control by Whittle [14], the state £ has the interpre-
tation of extremizing total stress, while ¢ extremizes past
stress. In Theorem 2, the controller is expressed in mized
coordinates (£1,¢?). That is, a ¢-like coordinate for the
first state and a (-like coordinate for the second. This
choice was made because it yields the simplest-looking
formulae for K. Coordinate choice is further discussed
in the proof outline in Section 5.

Structure. The controller I, may also be written in
the standard observer form. The first state equation is

§' = AC' + Bii' + Bod! — ZoL(y — Co¢')  (15)

where ! := 7y 2B X and 4! := K¢! are precisely the
worst-case noise and optimal input respectively in the
classical case [1]. In fact, (15) is identical to the classical

centralized estimator except Y has been replaced by Y.
The second state equation is

=A%+ Bou+~72YCTCL — Ly — Co¢?)  (16)

which is the estimator from K., expressed in the (-
coordinates, but with the optimal two-player u from The-
orem 2 rather than the centralized v = K¢ from Theo-
rem 1. These structural properties suggest that Cp,e ex-
hibits a separation structure similar to the one described
in [1], but further work is needed to state it precisely.

Limiting behavior. As mentioned in Section 1, en-
tropy tends to the squared Ho-norm in the limit v — co.
When this limit is considered for the DGKF controller,
then Z = I, {( = £ and the two realizations of Kcen
from (7) and (14) coincide.

Now consider the limit v — oo for e in (13). Then
Z = Z5 = Zg = I and the Hs-optimal structured con-
troller from (7] is recovered:

A+ ByK + LCs 0 —L
’Crn = BQ(K — K) A+B2K+LC2 —L
K-k K | 0



It can also be shown that in the limit v — oo, the com-
plicated condition (C2) simplifies to the simple linearly
coupled equations given in [7].

3 Comparison with LMI method

The only existing solution to METP is the work by
Scherer [11], which finds an LMI characterization of the
y-suboptimal controllers. Lower-triangular structures
with more than two players are also considered in [11].
As in the classical case, there are many benefits to using
an LMI approach; for example it allows a seamless treat-
ment of singular problems [4]. The DGKF solution [1]
makes more assumptions and is therefore more limited in
its applicability. However, the DGKF solution provides
observer-based formulas that give a clear and powerful
interpretation of the controller’s role and structure.

With regards to computational complexity, the DGKF
solution is more efficient than the LMI approach. If
A € R then the complexity of testing (B1)—(B3) is
dominated by solving two AREs and finding one spectral
radius. These are essentially eigenvalue problems and
can be solved in O(n?). The LMI formulation results in
a semidefinite program (SDP) with two n x n decision
variables. It therefore has a complexity of O(n®) when
using a conventional interior-point method.

For METP, the LMI test by Scherer [11] has more
variables than the centralized LMI solution, but never-
theless has complexity O(n®). Verifying the conditions in
Theorem 2 is dominated by the task of finding X and YV
that satisfy (C2). To this end, a simple and efficient al-
gorithm is given in Section 4 that roughly amounts to it-
eratively solving each ARE until convergence is achieved.
Each step has complexity O(n3) and it is verified empir-
ically that convergence to machine precision takes fewer
than 15 iterations and is independent of n.

Despite the proposed iterative ARE method be-
ing more computationally efficient than the LMI ap-
proach, both involve a necessary and sufficient condition
for METP. One therefore expects there to exist a trans-
formation of the coupled AREs of Theorem 2 into the
LMI condition of [11] and vice versa. Such a construc-
tion for the centralized case is detailed in [3], but is the
subject of future work for the unstructured case.

4 Tterative solution

As mentioned in Section 2, it is not clear how one would
verify (C2) in Theorem 2. In this section, preliminary
results are presented that suggest that a simple iterative
scheme may be used to efficiently verify (C2).

Iterative scheme (ITS). Given some v > 0 and a
starting guess Yy, solve the following AREs iteratively

Xis1 = X 4 Ric(Jx (V)
e . Ux) o, (17)
Yk+1 :Y+R1C(Jy(Xk+1))

and stop when X 1 and )A/k have converged to some X
and Y respectively. Then check to see if X >X , Y >
Y, p(XY) < 42, and p(XY) < 42, If so, then (C2)
is verified. If these conditions are not met, or if Jx ¢
dom(Ric) or Jy ¢ dom(Ric) for any of the iterates, then
the test is inconclusive.

Rapid convergence. The main issue with ITS is
choosing a suitable initial point. In other words, find-
ing Y; such that Jx (Yy) € dom(Ric). This task becomes
increasingly difficult as v approaches 7opt, the infimum
over all v that solves METP. When 7 — oo, (C2) is
satisfied by the Hy values of X and Y. Therefore, these
limiting values of X and Y, which are easily computed
as in [7, 8], are good initializations for ITS when ~ is
sufficiently large.

To investigate this initialization, random structured
systems with n states, and 7 inputs and outputs were
generated. The MATLAB function rss was used to gen-
erate (AllaBllacll) and (AQQ,BQQ,CQQ), while randn
was used to generate Aoy, Bay, Co1, By, Cy. Matrices
D13 and D2y were chosen to satisfy (A3)—(A4). Fi-
nally, By and C; were each scaled by 1/y/n. The result
was a family of systems for which the infimal central-
ized 7cen is approximately 3 for all n. For each test, yopt
was approximated using the LMI method [11] and then
ITS was performed for v = 27, using the initializa-
tion described above. 100 tests were performed for each
n € {4,8,12,16,20}. Valid X and Y satisfying (C2)
were successfully obtained in every case. In Figure 1, the
convergence error

1 N N N -
= ~V/I%e = X3+ ¥ - VI

is plotted a function of the iteration k for the case n = 20.
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Figure 1: Convergence error ej for the ITS algorithm.
100 random systems with n = 20 states at v ~ 2v4pt.

No appreciable difference in convergence rate was ob-
served as the state dimension n was increased; conver-
gence was achieved in fewer than 15 iterations every time.



Note that rss only produces stable systems. If un-
stable modes are included in A, then even the optimal
centralized veen becomes very volatile and can sometimes
exceed 10* depending on the number of unstable modes.
The convergence of ITS is still linear in the presence of
instability, but the rate is typically worse and more vari-
able than the stable case, often taking 30-50 iterations to
reach convergence. The slowest cases tested took up to
200 iterations. Nevertheless, the performance of ITS still
appears to be independent of n as in the stable case.

Warm-start technique. When 7 is too close to Yopt,
initializing Yy with the limiting value of Y is sometimes
ineffective. One possible solution is to iteratively de-
crease v and set Yy to be the converged Y from the pre-
vious <y iteration. Preliminary simulations indicate that
this warm-started approach works very well, and ~yop is

achieved as long as ~ is not decreased too rapidly.

5 Outline of the proof

The proof of Theorem 2 is algebraically involved, but
conceptually simple. Due to space constraints, an out-
line of the proof is given that highlights the key enabling
insights. The conditions (C1)—(C2) are necessary and
sufficient for there to exist a solution to METP; each
direction is addressed separately.

Proof of sufficiency. Suppose that (C1)-(C2) hold.
The aim is to verify (R1)—(R4) separately.

It is immediate that (R4) is satisfied because each of
the state-space matrices in (13) is block-lower-triangular.
This follows from the sparsity of L and K.

Requirements (R1)—(R2) are verified by appealing to
the bounded real lemma and a well-known relationship
between an ARE its associated algebraic Riccati inequal-
ity (ARI). We state these results as lemmas.

Lemma 3 (bounded real lemma). Suppose G has real-

ization (A, B,C,0) and v > 0 is given. The following
statements are equivalent.

(i) A is Hurwitz and ||Gllce < 7

(ii) There exists X > 0 such that
ATX + XA+~ 2XBB'X+C"C <0

Lemma 4. Suppose R and Q are symmetric and either
R >0 or @ >0. Then the following are equivalent

(i) There exists X > 0 satisfying the inequality
ATX + XA+ XRX +Q<0.

(ii) There exists Xo > 0 such that A+ RXy is Hurwitz
and ATXO + X0A + XoRXo+Q =0

If the above conditions hold, then 0 < Xy < X.

Applying Lemma 3 to the closed-loop map T (3) in-
duced by the proposed K., we find (i) is equivalent
to (R1)—(R2). Rather than solving the inequality in
Lemma 3, a stabilizing solution to the associated ARE is
constructed and Lemma 4 is applied.

There are many possible realizations for 7., to choose
from. If the plant P has state x, and K, has states
(€%,¢?), then define the coordinate choices

¢ T ¢t
m: x—{l T x—fl Y CQ—Cl
x — (2 xz — &2 x — (2

The new coordinates ¢2 and ¢! are related to the states
of Kme as follows.

¢ z;! 0 ][é&t
o=l ] 8

This relationship is a generalization of the classical Hqo
coordinate transform ¢ = Z~'¢ mentioned in Section 2.
The = and y coordinates were chosen because they yield
simple solutions to the bounded real equation. The result
is given by the following lemma.

Lemma 5. Consider the setting of Theorem 2. Express
the closed-loop map Tee in the x and y coordinates, and
associate the following labels to the corresponding state-
space matrices.

4,8,
Cy |

Tee =

2 s

Ax
C. |

Define the associated Hamiltonians

, A, v2B,BT] AT 40T,

HX — o Y il x , HY — B y7T7 }; Yy
-C,C, —A, -B,B, —A,

Then Hy € dom(Ric) and Hy € dom(Ric). Moreover,

B X 0 0 B v 0 0

Ric(Hx)=|0 X—X 0|, Ric(Hy)=|0 Y-Y 0

0o o0 & 0 0 Y

where X, Y, X, Y are defined in (B1)~(B2) and (C2),
and ® >0 and ¥ > 0.

The variables ® and ¥ from Lemma 5 are also solu-
tions to AREs, but the associated formulas are omitted
because the values of ® and ¥ are unimportant.

By Lemma 4, the solutions to the AREs given in
Lemma 5 imply that the bounded real inequalities also
have solutions, and so by Lemma 3, 7. has a stable
state-space realization and ||Tz|lco < . In other words,
requirements (R1)—(R2) have been verified.

Verifying (R3), or that the proposed controller min-
imizes entropy, is accomplished by first deriving a nec-
essary and sufficient condition for optimality and then
checking that it is satisfied by the proposed Kye.



Lemma 6. Suppose the set of admissible closed-loop
maps is parameterized by

Teo € {T1 + T2QT3 | Q € lower(Ha,m, k)}

where the T; are stable. If || Tetl|loo < 7, then Tep has
minimum, entropy if and only if
ni w19

A similar approach was taken in [8] to prove optimality
in the Ho case. Indeed, in the limit v — oo, Equation
(19) becomes the Hz optimality condition from [8].

It has already been verified that ||Te|lo < 7, so it re-
mains to show that the optimality condition holds. The
closed-loop map may be expressed in the affine form
Tee = T1 + T2Q7T3 using a modified Youla parameteri-
zation. The following result is from [8]. Similar parame-
terizations were also reported in [6] and [9].

1
Tl - T € [N ]

Lemma 7. Suppose P and its state-space realization sat-
isfies (4)—(5). There exists K € lower(R,, m, k) that sta-
bilizes P if and only if (Ci;, Asi, Bii) is stabilizable and
detectable fori =1,2. In this case, let K; and L; be such
that A+ B;; K; and A+ L;Cy; are Hurwitz. Then define
Ky := diag(K4, K3) and Ly := diag(Lq, Lo). the set of
all stabilized closed-loop maps is parameterized by

Teo € {T1 + T2QT3 | Q € lower(Hz,m,k)} (20)
where the T; matrices have the joint realization
AKd —Bng B1 B2
[Tl 7'2] _ 0 Arg Brg 0 (21)
Ts 0 Crka —DiaKg| 0 Do
0 CQ D21 0
and the following shorthand notation was used.
Agg = A+ By Ky Arpg:=A+ LiCy (22)

Ckq:=C1+DiaKyq Brg:=DBi1+ LqgDx

There is also a one-to-one mapping between each sta-
bilizing controller I and its associated Q-parameter, but
these details are left out of Lemma 7 to save some space.
Using the parameterization of Lemma 7, the optimality
condition (19) may be verified by direct substitution and
appropriate state-space simplifications.

Proof of necessity. This part of the proof is similar
to how necessity was proved in the Hy case [8]. Roughly,
the Qi1 part of the controller from the parameteriza-
tion of Lemma 7 is held fixed and the problem of finding
the minimum-entropy [le ng] is considered. This
problem is unstructured so Theorem 1 may be applied.
The result is that a pair of AREs must have positive-
semidefinite solutions and a spectral radius condition
must be met. After some algebraic manipulations, it is
found that the AREs are those that correspond to the
Hamiltonians Jx and Hy and the spectral radius condi-
tion amounts to p(XY) < 42. Using a similar argument,
holding Qs fixed leads to the conditions on Jy and Hx
together with p(XY) < ~2.
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