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Abstract

This work presents the solution to a class of decentral-
ized linear quadratic state-feedback control problems, in
which the plant and controller must satisfy the same com-
bination of delay and sparsity constraints. Using a novel
decomposition of the noise history, the control problem is
split into independent subproblems that are solved using
dynamic programming. The approach presented herein
both unifies and generalizes many existing results.

I Introduction

While optimal decentralized controller synthesis is diffi-
cult in general [25, 27], much progress has been made
toward identifying tractable subclasses of problems.
Two closely related conditions, partial nestedness and
quadratic invariance, guarantee respectively that the op-
timal solution for an LQG control problem is linear [4],
and that optimal synthesis can be cast as a convex pro-
gram [16, 19]. These results alone do not guarantee that
the optimal controller can be efficiently computed since
the associated optimization problems are large.

For linear quadratic problems, efficient convex op-
timization methods have been used to solve state-
feedback [17] and output-feedback [3, 8, 18] cases. A
drawback of purely computational approaches is that lit-
tle insight is gained into the structure of optimal con-
trollers. However, efficient, explicit solutions that pro-
vide a physical interpretation for the states of the con-
troller have been found separately for the delay and spar-
sity cases.

Delay case: All controllers eventually measure the
global state, but not necessarily simultaneously. In-
stances with a one-timestep delay between controllers
were solved in the 1970s [6, 20, 28]. In the linear
quadratic setting, the state-feedback problem with de-
lays characterized by a graph is solved in [7].

Sparsity case: All state measurements are transmit-
ted instantly, but not all controllers receive all measure-
ments. Explicit solutions for a two-controller system
were given in [23] and extended to a general class of
quadratically invariant sparsity patterns in [21, 22].

This paper unifies the treatment of state feedback with
sparsity constraints, [21, 22], and delay constraints, [7],

by considering an information flow characterized by a
directed graph. Each edge may be labeled with a 0
for instantaneous information transfer or with a 1 for
a one-timestep delay. See below for an example of such
a graph. The 0–1 convention is merely for ease of expo-
sition; the case of general inter-node delays is discussed
in Section III.

Example 1. Consider the network graph of Fig. 1.

1 2 3

1

1

0

Figure 1: Network graph for Example 1. Each node
represents a subsystem, and the edge labels indicate the
propagation delay from one subsystem to another.

The example of Fig. 1 contains both salient features
previously discussed: delay constraints (between nodes 1
and 2) and sparsity constraints (between nodes 2 and 3).

A fundamental assumption in this work is that the con-
trol policies are jointly optimized in order to minimize a
global cost function. In our search for the optimal poli-
cies, we assume global knowledge of the graph topology,
system dynamics, and cost function. In other words, the
system is decentralized in the sense that controllers have
limited state information at run time. However, the de-
sign of the controllers assumes global knowledge. In the
absence of such an assumption the resulting problem is
nonconvex [27]. Thus, work on multi-agent control with
limited system knowledge typically does not study opti-
mal control [1], or finds locally optimal solutions to non-
convex problems [2].

In Section II we sketch our approach for Example 1. In
Sections III and IV, we treat general directed graphs. We
discuss how our work unifies existing results in Section V
and we discuss its limitations in Section VI. We prove the
main results in Section VII and conclude in Section VIII.
A preliminary version of this work appeared in [9]. The
present work includes expanded proofs and discussions,
and presents a message-passing implementation of the
optimal controller.
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II Solution to Example 1

The graph of Fig. 1 indicates constraints both on infor-
mation sharing amongst controllers as well as on the sys-
tem dynamics. In this case, the dynamics are given by
discrete-time state-space equations of the formx1t+1

x2t+1

x3t+1

 =

A11
t A12

t 0
A21
t A22

t 0
A31
t A32

t A33
t

x1tx2t
x3t


+

B11
t B12

t 0
B21
t B22

t 0
B31
t B32

t B33
t

u1tu2t
u3t

+

w1
t

w2
t

w3
t

 (1)

for t = 0, 1, . . . , T − 1. The state, input, and disturbance
are denoted by xt, ut, and wt respectively. Each vector
is partitioned into subvectors associated with the nodes
of the graph. For example, x2t is associated with node 2.
The dynamics are constrained according to the directed
graph. If node i cannot affect node j after a delay of 0
or 1, then Ajit = 0 and Bjit = 0 for all t.

We assume that for i ∈ {1, 2, 3}, the initial state and
the disturbance vectors {xi0, wi0, . . . , wiT−1} are indepen-
dent Gaussian random vectors with means and covari-
ances

xi0 ∼ N (0,Σi0) and wit ∼ N (0,W i
t ) for all t. (2)

The policies of the decision-makers choosing uit are again
constrained according to the graph. In particular,

u1t = γ1t
(
x10:t, x

2
0:t−1

)
(3a)

u2t = γ2t
(
x10:t−1, x

2
0:t

)
(3b)

u3t = γ3t
(
x10:t−1, x

2
0:t, x

3
0:t

)
(3c)

for all t, where each γit is a measurable function of the
state information that has had sufficient time to propa-
gate to node i. We use the notation xi0:t to denote the
state history (xi0, . . . , x

i
t).

The objective is to choose the policies γ that minimize
the expected finite-horizon quadratic cost

min
γ

Eγ
(
T−1∑
t=0

[
xt
ut

]T [
Qt St
ST
t Rt

] [
xt
ut

]
+ xTTQfxT

)
(4)

where the expectation is taken with respect to the joint
probability measure on (x0:T , u0:T−1) induced by the
choice of γ. We make the standard assumptions that[

Qt St
ST
t Rt

]
≥ 0, Rt > 0, Qf ≥ 0. (5)

We assume that all decision-makers know the under-
lying network graph G(V, E) and all system parame-
ters A0:T−1, B0:T−1, Q0:T−1, R0:T−1, S0:T−1, and Qf .
Note that system matrix sizes may also vary with time.

Under the above assumptions, the problem is partially
nested. Thus, the results from [4] imply that the optimal
policies γ are linear functions.

Node 1 · · · w1
t−3 w1

t−2 w1
t−1

Node 2 · · · w2
t−3 w2

t−2 w2
t−1

Node 3 · · · w3
t−3 w3

t−2 w3
t−1

t− 3 t− 2 t− 1 Time

{1}{1, 2, 3}

{2, 3}

{3}

Figure 2: Noise partition diagram for Example 1 (see
Fig. 1). The entire disturbance history is partitioned
according to which subset of the nodes have access to
the information. The subsets are indicated in the labels.

II-A Disturbance-feedback representation

The first step in our solution reparameterizes the input
as functions the initial conditions and the disturbances.
As in previous decentralized control work [3, 17, 21, 22],
such a representation enables us to use statistical inde-
pendence of the noise terms to simplify derivations.

Defining w−1 := x0, the controllers (3) may be equiv-
alently written as

u1t = γ̂1t
(
w1
−1:t−1, w

2
−1:t−2

)
(6a)

u2t = γ̂2t
(
w1
−1:t−2, w

2
−1:t−1

)
(6b)

u3t = γ̂3t
(
w1
−1:t−2, w

2
−1:t−1, w

3
−1:t−1

)
(6c)

To see why, consider for example the information
known by node 1 at time t. Given (x10:t, x

2
0:t−1), we

may use (3) to compute past decisions (u10:t−1, u
2
0:t−1).

Then, using (1) we may infer the past disturbances
(w1
−1:t−1, w

2
−1:t−2). Conversely, if (w1

−1:t−1, w
2
−1:t−2) is

known, we may compute (u10:t−1, u
2
0:t−1) via (6) and then

compute (x10:t, x
2
0:t−1) via (3). It is straightforward to

show that linearity of γ implies linearity of γ̂.

II-B State and input decomposition

Extending the method from [7], we regroup the distur-
bance terms in order to decompose the input and state
into independent random variables. Note that (6) can be
used to partition the noise terms based on which subsets
of the noise history the controllers can measure. This
leads to the noise partition diagram shown in Fig. 2.
For example, the bottom cluster {. . . , w3

t−3, w
3
t−2, w

3
t−1}

is available only to u3t , whereas the cluster {w2
t−1} is

available to both u2t and u3t . We call the noise sub-
sets label sets and denote them by Lst , where s ∈
{{1}, {2, 3}, {3}, {1, 2, 3}}. For example, L{1}t = {w1

t−1}.
We may rewrite (6) as

u1t = γ̂1t
(
L{1}t ,L{1,2,3}t

)
(7a)

u2t = γ̂2t
(
L{2,3}t ,L{1,2,3}t

)
(7b)

u3t = γ̂3t
(
L{3}t ,L{2,3}t ,L{1,2,3}t

)
(7c)
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Note that uit depends on Lst if and only if i ∈ s. Because
the disturbances are mutually independent and the label
sets are disjoint, we may decompose ut as a sum of its
projections onto each of the Lst . This leads to a decom-
position of the form

ut =

ϕ{1}t0
0

+

 0[
ϕ
{2,3}
t

]2[
ϕ
{2,3}
t

]3
+

 0
0

ϕ
{3}
t

+ ϕ
{1,2,3}
t (8)

where ϕst is a linear function of the elements of Lst . Note
that under this decomposition, the ϕst component of uit is
zero if i /∈ s. We shall see that the states xit also depend
linearly on the label sets in a manner analogous to (7).
Therefore, the state xt can be similarly decomposed as

xt =

ζ{1}t

0
0

+

 0[
ζ
{2,3}
t

]2[
ζ
{2,3}
t

]3
+

 0
0

ζ
{3}
t

+ ζ
{1,2,3}
t (9)

It will also be shown that the optimal decisions have the
form ϕst = Ks

t ζ
s
t where the {Ks

t } are real matrices and
the equivalent constraints from (3), (6), and (7) are sat-
isfied by construction.

II-C Update Equations

The optimality proof uses dynamic programming and re-
quires a description of the evolution of ζst over time. Since
ζst and ϕst are linear functions of the label set Lst terms,
the dynamics of the label sets will be described as an
intermediate step. From the noise partition diagram of
Fig. 2, the label sets have dynamics

L{1}t+1 = {w1
t }, L{3}t+1 = L{3}t ∪ {w3

1},

L{2,3}t+1 = {w2
t }, L

{1,2,3}
t+1 = L{1,2,3}t ∪ L{1}t ∪ L{2,3}t

(10)
with initial conditions

L{1}0 = {x10}, L{3}0 = {x30},

L{2,3}0 = {x20}, L{1,2,3}0 = ∅.

The label set dynamics can be visualized by using an
information graph as shown in Fig. 3 (cf. [7]). An edge
r → s indicates that Lrt ⊂ Lst+1. Similarly, an edge
wi → s indicates that {wit} ⊂ Lst+1. It can be shown by
induction that the ζt coordinates defined below satisfy
(9) for t = 0, . . . , T .

ζ
{1}
t+1 = w1

t (11a)

ζ
{2,3}
t+1 =

[
w2
t

0

]
(11b)

ζ
{3}
t+1 = A33

t ζ
{3}
t +B33

t ϕ
{3}
t + w3

t (11c)

ζ
{1,2,3}
t+1 = Atζ

{1,2,3}
t +Btϕ

{1,2,3}
t (11d)

+A
{1,2,3},{2,3}
t ζ

{2,3}
t +B

{1,2,3},{2,3}
t ϕ

{2,3}
t

+A
{1,2,3},{1}
t ζ

{1}
t +B

{1,2,3},{1}
t ϕ

{1}
t ,

w1 w2 w3

{1} {2, 3} {3}

{1, 2, 3}

Figure 3: Information graph for Example 1. Each node
corresponds to a subset of nodes in the network graph
(see Fig. 1).

with initial conditions

ζ
{1}
0 = x10, ζ

{2,3}
0 =

[
x20
0

]
, ζ
{3}
0 = x30, ζ

{1,2,3}
0 = 0.

The notation Arst denotes the submatrix [Aijt ] with i ∈ r
and j ∈ s. For example, A

{3},{2,3}
t =

[
A32
t A33

t

]
.

Note that the dynamics in (11) can be deduced directly
from the information graph. Indeed, ζst+1 only depends
on wit if wi → s and ζst+1 only depends on (ζrt , ϕ

r
t ) when-

ever r → s. If I is the identity matrix partitioned to
conform with xt, we have the following compact repre-
sentation of the dynamics.

ζs0 =
∑
wi→s

Is,{i}xi0 (12a)

ζst+1 =
∑
r→s

(
Asrt ζ

r
t +Bsrt ϕ

r
t

)
+
∑
wi→s

Is,{i}wit. (12b)

II-D Decoupled Optimization Problems

Using the theory developed so far, we will sketch the
strategy for decoupling optimization problems. The
method is based on dynamic programming.

Suppose that the expected cost incurred by the optimal
policy γ∗0:T−1 for steps t+ 1, . . . , T has the form

Eγ
∗

(
T−1∑
k=t+1

[
xk
uk

]T [
Qk Sk
ST
k Rk

] [
xk
uk

]
+ xTTQfxT

)
=
∑
s

Eγ
∗
((
ζst+1

)T
Xs
t+1ζ

s
t+1

)
+ ct+1 (13)

where the Xs
t+1 are positive semidefinite, ct+1 is a con-

stant, and the sum ranges over the nodes of the infor-
mation graph from Fig. 3. Using (9), this decomposition
holds at t+ 1 = T with Xs

T = Qssf and cT = 0.

Substituting (12) into (13) and using independence,
the expected cost for steps t, t+ 1, . . . , T is given by

∑
r

Eγ
∗

([
ζrt
ϕrt

]T
Γrt

[
ζrt
ϕrt

])
+ ct, (14)

where r ranges over all nodes in the information graph
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and Γrt and ct are given by

Γrt =

[
Qrrt Srrt
Srrt

T Rrrt

]
+
[
Asrt Bsrt

]T
Xs
t+1

[
Asrt Bsrt

]
(15)

ct = ct+1 +
∑
i∈V
wi→s

trace
(

(Xs
t+1){i},{i}W i

t

)
. (16)

Here s is the unique node such that r → s.

Note that Γrt is positive semidefinite, with a positive
definite lower right block. It follows that the quadratic
form in (14) is minimized over ϕrt by a linear mapping

ϕrt = Kr
t ζ
r
t . (17)

As discussed in Section II-B, the mapping (17) satisfies
the information constraints of the problem and the opti-
mal cost is of the form in (13).

II-E Message passing implementation

The controller described above depends on the ζrt terms.
These terms may be computed by using a combination
of local measurements, local memory, and message pass-
ing. The proposed implementation may be visualized by
augmenting Fig. 1 to include the appropriate messages,
memory, and update equations. See Fig. 4.

In the rest of the paper, we will extend the results of
this section more general decentralized control problems.

III Problem statement for the general
case

We begin by defining some useful notation. The symbol
I denotes a block-identity matrix whose dimensions are
to be inferred by context. This notation is useful for
extracting blocks from larger matrices. For example, if
At is as in Example (1), the fact that A13

t = 0 and A23
t =

0 implies that AtI
{1,2,3},{3} = I{1,2,3},{3}A33

t .

If Y = {y1, . . . , yM} is a set of random vectors (possi-
bly of different sizes), we say that z ∈ linY if there are
appropriately sized real matrices C1, . . . , CM such that
z = C1y1 + · · ·+ CMyM .

We also require some basic definitions regarding
graphs. A network graph G(V, E) is a directed graph
where each edge is labeled with a 0 if the associated link
is delay-free, or a 1 if it has a one-timestep delay. The
vertices are V = {1, . . . , n}. If there is an edge from j to
i, we write (j, i) ∈ E , or simply j → i. When delays are

pertinent, they are denoted as j
0−→ i or j

1−→ i. Directed
cycles are permitted, but we assume there are no directed
cycles with a total delay of zero. In our framework, all
nodes in a delay-free cycle can be collapsed into a single
node. Fig. 1 shows the network graph for Example 1.
Associated with the network graph G(V, E) is the delay
matrix D. Each entry Dij is the sum of the delays along

Memory: {ζ{1}t−1, ζ
{1,2,3}
t−1 }(

ζ
{1}
t−1, ζ

{2,3}
t−1 , ζ

{1,2,3}
t−1

)
(11d)−−−→ ζ

{1,2,3}
t(

x1t , ζ
{1,2,3}
t

)
(9)−−→ ζ

{1}
t(

ζ
{1}
t , ζ

{1,2,3}
t

)
(8),(17)−−−−−→ u1t

Memory: {ζ{2}t−1, ζ
{1,2,3}
t−1 }(

ζ
{1}
t−1, ζ

{2,3}
t−1 , ζ

{1,2,3}
t−1

)
(11d)−−−→ ζ

{1,2,3}
t(

x2t , ζ
{1,2,3}
t

)
(9)−−→ ζ

{2,3}
t(

ζ
{2,3}
t , ζ

{1,2,3}
t

)
(8),(17)−−−−−→ u2t

Memory: ∅(
x3t , ζ

{2,3}
t , ζ

{1,2,3}
t

)
(9)−−→ ζ

{3}
t(

ζ
{3}
t , ζ

{2,3}
t , ζ

{1,2,3}
t

)
(8),(17)−−−−−→ u3t

x1t

x2t

x3t

u1t

u2t

u3t

0 : ζ
{2,3}
t , ζ

{1,2,3}
t

1 : ζ
{1}
t 1 : ζ

{2,3}
t

1

2

3

Figure 4: Network graph for Example 1 with messages
and memory. The syntax (. . . ) → ζst means that ζst is
computed as a function of the left-hand side terms. The
numbers above the arrows indicate which equations are
involved in the computation. The messages passed be-
tween nodes are shown next to the graph edges.

the directed path from j to i with the shortest delay. We
assume Dii = 0 for all i, and if no directed path exists,
we set Dij =∞. The delay matrix for Example 1 is

D =

0 1 ∞
1 0 ∞
1 0 0

 . (18)

Delays are assumed to be fixed for all time.

We now state the general class of problems that can
be solved using the method developed in this paper.

Problem 1. Let G(V, E) be a network graph with associ-
ated delay matrix D. Suppose the following time-varying
equations are given for all i ∈ V and for t = 0, . . . , T − 1.

xit+1 =
∑
j∈V
Dij≤1

(
Aijt x

j
t +Bijt u

j
t

)
+ wit (19)

Stacking the various vectors and matrices, we obtain the
more compact representation

xt+1 = Atxt +Btut + wt. (20)

The random vectors {xi0, wi0, . . . , wiT−1}i∈V are mutually
independent Gaussians, with means and covariances are
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given by (2). At time t controller i can only utilize state
values from the information set defined by

Iit =
{
xjk : j ∈ V, 0 ≤ k ≤ t−Dij

}
, (21)

so that for some function γit

uit = γit(Iit). (22)

Note that Iit is the set of states belonging to nodes that
have had sufficient time to reach node i by time t.

The goal is to choose the set of policies γ =
{γi0:T−1}i∈V that minimize the expected quadratic
cost (4)

In Problem 1, as in Example 1, we assume that all
decision-makers know the system dynamics, cost matri-
ces, and network graph.

While some feasible controllers could use memory that
grows with the time horizon T , we will show by construc-
tion that there exists an optimal policy that has a finite
memory that is independent of T .

1 2
2

1 R 2
1 1

Figure 5: Network graph for a two-timestep delay. The
equivalent representation on the right uses a relay node
and two one-timestep delays.

Larger delays. The problem formulation in this paper
only allows for delays of 0 or 1 timestep along edges of the
network graph. Larger delays can be accommodated by
including relay nodes. Consider for example the network
graph of Fig. 5. At time t, the relay node stores x1t−1.
Therefore, at time t, node 2 receives x1t−2 from the relay
node, as desired. The system matrices for the relay node
are also chosen so that there is no injected noise and no
cost incurred.

IV Main results

This section presents the main results: two explicit state-
space solutions for Problem 1. The first form has states
which are functions of the primitive random variables x0
and w0:t−1. The second form uses state feedback only
and gives a distributed implementation.

Our first step is to define the information graph (as in
Fig. 3) for the general graph case (cf. [7]). Let sjk be the
set of nodes reachable from node j within k steps:

sjk = {i ∈ V : Dij ≤ k}. (23)

The information graph Ĝ(U ,F), is given by

U = {sjk : k ≥ 0, j ∈ V}
F = {(sjk, s

j
k+1) : k ≥ 0, j ∈ V}.

The additional labels wi are not counted amongst the
nodes of Ĝ as a matter of convention, but are shown as a
reminder of which noise signal is being tracked. We will
often write expressions such as {s ∈ U : wi → s} to de-
note the set of root nodes of Ĝ. The following proposition
gives some useful properties of the information graph.

Proposition 1. Given an information graph Ĝ(U ,F),
the following properties hold.

(i) Every node in Ĝ has exactly one descendant. In
other words, for every r ∈ U , there is a unique
s ∈ U such that r → s.

(ii) Every path eventually hits a node with a self-loop.

(iii) If the network graph satisfies |V| = n, the number
of nodes in Ĝ is bounded by n ≤ |U| ≤ n2 − n+ 1.

Note that the information graph will have several con-
nected components whenever the network graph is not
strongly connected, see Fig. 3.

We are now ready to present the main result of this pa-
per, which expresses the optimal controller as a function
of new coordinates induced by the information graph.

Theorem 2. Consider Problem 1, and let Ĝ(U ,F) be
the associated information graph. Define the matrices
{Xr

0:T }r∈U and {Kr
0:T−1}r∈U recursively as follows,

Xr
T = Qrrf (24a)

Ωrt = Rrrt +Bsrt
TXs

t+1B
sr
t (24b)

Kr
t = −

(
Ωrt
)−1(

Srrt +Asrt
TXs

t+1B
sr
t

)T
(24c)

Xr
t = Qrrt +Asrt

TXs
t+1A

sr
t −Kr

t
TΩrtK

r
t (24d)

where for each r ∈ U , we have defined s ∈ U to be the
unique node such that r → s. The optimal control deci-
sions satisfy the following state-space equations

ζs0 =
∑
wi→s

Is,{i}xi0 (25a)

ζst+1 =
∑
r→s

(
Asrt +Bsrt K

r
t

)
ζrt +

∑
wi→s

Is,{i}wit (25b)

uit =
∑
r3i

I{i},rKr
t ζ
r
t . (25c)

The corresponding optimal expected cost is

V0 =
∑
i∈V
wi→s

trace
(

(Xs
0){i},{i}Σs0

)

+

T−1∑
t=0

∑
i∈V
wi→s

trace
(

(Xs
t+1){i},{i}W i

t

)
. (26)

Proof. See Section VII.

Remark 3. Note that when r ∈ U has a self-loop, the
recursion for Xr

t only depends on Xr
t+1 and is a classical

Riccati equation. Otherwise, repeated application of (24)
shows that Xr

t is a function of Xs
t+k, where s→ s is the

unique self loop reachable from r and k is the length of
the path.
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Equation (25) expresses the controller as a map w 7→ u.
Our next result gives a message passing implementation
of the optimal controller as a map x 7→ u.

Theorem 4. Consider the problem setting of Theorem 2.
For each node i and all t = 0, . . . , T − 1, define the out-
going message sent from node i to node j by

If i
0−→ j : Mij

t = {ζst : s ∈ U , i, j ∈ s}. (27a)

If i
1−→ j : Mij

t = {ζst : s ∈ U , i ∈ s, j /∈ s}. (27b)

and define the local memory of node i by Ri0 = ∅ and

Rit+1 = {ζst : s ∈ U , i ∈ s, @j ∈ s with j
0−→ i}. (28)

If controller i measures xit at time t, then the distributed
algorithm defined by (27) and (28) can be executed with-
out deadlock. In other words, the Mij

t and Rit can be
computed for all t and i. Furthermore, if i ∈ s ∈ U then

ζst ∈ lin

(
{xit} ∪ Rit ∪

⋃
j

0−→i

Mji
t ∪

⋃
j

1−→i

Mji
t−1

)
, (29)

where Mji
−1 = ∅. Thus, the optimal uit at every timestep

can be computed from the measurement, the local mem-
ory, and the incoming messages at time t.

Proof. See Section VII-D. We
will prove in Section VII that the optimal controller is
unique. However, the choice of realization is not unique,
and there is no guarantee that the representation given
in Theorem 4 will be minimal.

The memory required by each node in Theorem 4 may
be large because it depends on how many s ∈ U contain i.
If the global state xt has dimension N and there are n
nodes, the memory is bounded by |Rit| ≤ n2N . Note that
this bound is independent of the horizon length T .

IV-A Extension to the infinite-horizon case

Our solution extends naturally to an infinite horizon
when all system parameters, A, B, Q, R, S, and W are
time-invariant. We seek a stabilizing controller that min-
imizes the average step cost as the horizon tends to ∞:

min
γ

lim
T→∞

Eγ
(

1

T

T−1∑
t=0

[
xt
ut

]T [
Q S
ST R

] [
xt
ut

])
(30)

Corollary 5. Consider Problem 1 under the time-
invariance and average cost assumptions above and let
Ĝ(U ,F) be the associated information graph. Further
suppose that for each self-loop s → s in the information
graph, the following assumptions hold:

(1) (Ass, Bss) is stabilizable

(2)

[
Ass − eθI Bss

Css Dss

]
has full column rank ∀θ ∈ [0, 2π]

where Css and Dss are any matrices that factorize[
Qss Sss

SssT Rss

]
=
[
Css Dss

]T [
Css Dss

]
Define the matrices {Xr}r∈U and {Kr}r∈U as follows

Ωr = Rrr +BsrTXsBsr (31a)

Kr = −
(
Ωr
)−1(

Srr +AsrTXsBsr
)T

(31b)

Xr = Qrr +AsrTXsAsr −KrTΩrKr (31c)

where for each r ∈ U , we have defined s ∈ U to be the
unique node such that r → s. The optimal steady-state
controller satisfies the following state-space equations

ζst+1 =
∑
r→s

(
Asr +BsrKr

)
ζrt +

∑
wi→s

Is,{i}wit (32a)

uit =
∑
r3i

I{i},rKrζrt (32b)

The corresponding optimal expected average cost is

V0 =
∑
i∈V
wi→s

trace
(

(Xs){i},{i}W i
)

(33)

Proof. If s → s is a self-loop, then Remark 3 com-
bined with the hypothesis implies that for any fixed t,
as T → ∞, the value of Xs

t converges to a stabilizing
solution to the corresponding algebraic Riccati equation
(31c), and Ass +BssKs is stable, [29]. If r is not a self-
loop, Remark 3 implies that Xr

t is a continuous function
of Xs

t+k, and thus Xr
t → Xr as T →∞.

To see that the controller is stabilizing, note that when
r is not a self-loop, then the mapping w 7→ ζr has finite
impulse response (FIR), and is thus stable. Thus if s is
a self-loop, the mapping w → ζs is of the form ζst+1 =
(Ass +BssKs)ζst + ηst , where Ass +BssKs is stable and
ηst FIR colored noise.

V Specialization to existing results

In this section, we explain how Theorem 2 specializes to
the existing results mentioned in Section I. Representa-
tive graphs for these examples are show in Fig. 6.

Corollary 6 (Centralized case). If the network graph
has a single node as in Fig. 6a, the solution reduces to
the standard linear quadratic regulator.
Proof. The information graph consists of a single node
with a self-loop. Thus, (24) reduces to the classical Ric-

cati recursion and (25) implies that ζ
{1}
t = x1t .

Corollary 7 (Sparsity constraints [21, 22]). If the net-
work graph has N nodes with no delayed edges as in
Fig. 6b, then the optimal gains can be computed from
N classical Riccati recursions, one for each node.
Proof. The information graph consists of N discon-
nected self-loops. Therefore, the solution from Theo-
rem 2 reduces to N decoupled LQR solutions.
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Figure 6: Three simple special cases.

Corollary 8 (Delay constraints [7]). If the network
graph is strongly connected and all edges have a one-
timestep delay, then the optimal gains can be computed as
algebraic functions of a single classical Riccati solution.
Proof. All directed paths in the information graph lead
to the self-loop V → V. The recursions (24) imply that
all gains can be computed as functions of XV0:T , which is
computed from a classical Riccati recursion.

VI Limitations

We now discuss selected topics exploring the limitations
of our work and directions for possible future research.

Output feedback. In output feedback problems, the
decision-makers have access to noisy measurements of
states rather than the states themselves. Solutions are
known for several special topologies [5, 6, 10, 13, 14, 15,
20, 24, 28]. Despite these examples, it is unlikely that the
present work will extend to output feedback for general
graphs, since the decomposition of the information into
independent sets is unlikely to hold.

Correlated noise. We assume in Problem 1 that the
noises injected into the various nodes are independent.
This fact implies that the ζst states are mutually inde-
pendent, which simplifies the dynamic programming ar-
gument. If the noises are correlated, then the ζst may not
be independent. Even for two player problems the opti-
mal solutions have significantly different structures, [11].

Realizability. In general, a causal linear time-
invariant system may be represented using either state-
space or transfer functions. However, the two represen-
tations are not equivalent when we impose sparsity con-
straints for the state-space matrices [12, 26]. We avoid
realizability issues by defining the problem in state space
form, and derive a state space controller that satisfies the
sparsity and delay constraints by construction.

VII Proof of main results

This section contains proofs of Theorems 2 and 4. The
proof of Theorem 2 generalizes the sketch from Section II.

VII-A Linearity

Linearity of the optimal policy follows from partial nest-
edness, a concept first introduced by Ho and Chu in [4].
We state the main definition and result below.

Definition 9. A dynamical system (20) with informa-
tion structure (22) is partially nested if for every admis-
sible policy γ, whenever ujτ affects Iit , then Ijτ ⊂ Iit .

Lemma 10 (see [4]). Given a partially nested structure,
the optimal control law that minimizes a quadratic cost
of the form (4) exists, is unique, and is linear.

In other words, an information structure is partially
nested if whenever the decision of Player j affects the in-
formation used in Player i’s decision, then Player i must
have access to all the information available to Player j.

Lemma 11. The information structure described in
Problem 1 is partially nested, so the optimal solution is
linear and unique.

VII-B Disturbance-feedback representation

As in Section II-A, the control inputs as expressed as
functions of the noise and initial conditions, in order to
exploit independence properties.

Let wi−1 = xi0, and define the noise information set by

Îit =
{
wjk−1 : j ∈ V, 0 ≤ k ≤ t−Dij

}
. (34)

Lemma 12. A collection of functions {γi0:T−1}i∈V sat-
isfies the information constraint (22) if and only if there
are functions {γ̂i0:T−1}i∈V such that

uit = γit(Iit) = γ̂it(Îit). (35)

As in Section II, the paramterization in (35) is an inter-
mediate step that will enable us to use a partition of the
noise variables, defined in the next lemma, to decompose
the inputs and states into independent variables.

Lemma 13. Consider an information graph Ĝ(U ,F)
and define the corresponding label sets {Ls0:T }s∈U recur-
sively by

Ls0 =
⋃
wi→s

{xi0} (36a)

Lst+1 =
⋃
wi

t→s

{wi} ∪
⋃
r→s
Lrt . (36b)

The following properties of the label sets hold.

(i) For every t ≥ 0, the label sets are a partition of the
noise history:

Lrt ∩ Lst = ∅ when r 6= s, and {w−1:t−1} =
⋃
s∈U
Lst .

(ii) For all i ∈ V,

Îit =
⋃
s3i
Lst . (37)
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Lemma 11 implies that the optimal solution is linear.
When policies are restricted to be linear, (37) immedi-
ately implies the following corollary.

Corollary 14. A linear policy {γi0:T−1}i∈V is feasible if
and only if the inputs satisfy the following decomposition:

ut =
∑
s∈U

IV,sϕst , (38)

where ϕst ∈ lin(Lst ).

As before, the state can also be decomposed as a sum
of terms from lin(Lst ).

Lemma 15. Say that ϕst ∈ lin(Lst ), and define ζst recur-
sively by

ζs0 =
∑
wi→s

Is,{i}xi0 (39a)

ζst+1 =
∑
r→s

(
Asrt ζ

r
t +Bsrt ϕ

r
t

)
+
∑
wi→s

Is,{i}wit. (39b)

Then ζst ∈ lin(Lst ) and xt can be decomposed as

xt =
∑
s∈U

IV,sζst . (40)

Note that (39) agrees with the formula (25) from The-
orem 2, provided that ϕst = Ks

t ζ
s
t . Corollary 14 and

Lemma 15 imply that this policy is feasible.

Remark 16. We may interpret ζst and ϕst as conditional
estimates of xt and ut, respectively. Namely,

ζst = Is,V E(xt | Lst ) and ϕst = Is,V E(ut | Lst ).

VII-C Optimality

We now prove the controller is optimal, and derive an
expression for the corresponding minimal expected cost.
Our proof uses a dynamic programming argument, and
we optimize over policies rather than actions. Let γt =
{γit}i∈V be the set of policies at time t. By Lemma 10,
we may assume the γit are linear. Define the cost-to-go

Vt(γ0:t−1) =

min
γt:T−1

Eγ
(
T−1∑
k=t

[
xk
uk

]T [
Qk Sk
ST
k Rk

] [
xk
uk

]
+ xTTQfxT

)
,

where the expectation is taken with respect to the joint
probability measure on (xt:T , ut:T−1) induced by the
choice of γ = γ0:T−1. These functions are the minimum
expected future cost from time t, given fixed policies up
to time t−1. By iterating the minimizations we can write
a recursive formulation for the cost-to-go,

Vt(γ0:t−1) = (41)

min
γt

Eγ
([

xt
ut

]T [
Qt St
ST
t Rt

] [
xt
ut

]
+ Vt+1(γ0:t−1, γt)

)
.

Our objective is to find the optimal cost (4), which is
simply V0. Consider the terminal timestep, and use the
decomposition (40),

VT (γ0:T−1) = Eγ
(
xTTQfxT

)
= Eγ

∑
s∈U

(ζsT )TQssf (ζsT ).

In the last step, we used the fact that the ζst coordinates
are independent. Note that VT depends on the policies
up to time T − 1 because the distribution of ζsT depends
on past policies implicitly through (12b). We will prove
by induction that the value function always has a similar
quadratic form. Suppose that for some t ≥ 0, we have

Vt+1(γ0:t) = Eγ
∑
s∈U

(ζst+1)TXs
t+1(ζst+1) + ct+1,

where {Xs
t+1}s∈U is a set of matrices and ct+1 is a scalar.

Now compute Vt(γ0:t−1) using the recursion (41). Sub-
stituting ϕst and ζst from (38) and (38), and using the
independence of Lst , we obtain

Vt(γ0:t−1) = min
γt

Eγ
(∑
s∈U

[
ζst
ϕst

]T [
Qsst Ssst
Ssst

T Rsst

] [
ζst
ϕst

]

+ (ζst+1)TXs
t+1(ζst+1) + ct+1

)
.

Substituting the state equations (39b), using the inde-
pendence and rearranging terms, we obtain

Vt(γ0:t−1) = min
γt

Eγ
∑
r∈U

[
ζrt
ϕrt

]T
Γrt

[
ζrt
ϕrt

]
+ ct, (42)

where Γr0:T−1 and c0:T−1 are given by:

Γrt =

[
Qrrt Srrt
Srrt

T Rrrt

]
+
[
Asrt Bsrt

]T
Xs
t+1

[
Asrt Bsrt

]
(43)

ct = ct+1 +
∑
i∈V
wi→s

trace
(

(Xs
t+1){i},{i}W i

t

)
. (44)

The terminal conditions are ΓrT = Qrrf and cT = 0, and s

is the unique node in Ĝ(U ,F) such that r → s, see Propo-
sition 1. Note that the choice of Kr

t and Xr
t implies that

the following bound holds pointwise:[
ζrt
ϕrt

]T
Γrt

[
ζrt
ϕrt

]
≥
[
ζrt

Kr
t ζ
r
t

]T
Γrt

[
ζrt

Kr
t ζ
r
t

]
= (ζrt )TXr

t (ζrt ).

Substitution yields

Vt(γ0:t−1) ≥ Eγ
∑
s∈U

(ζst )TXs
t (ζst ) + ct.

This lower-bound is tight, because the optimal uncon-
strained actions are ϕst = Ks

t ζ
s
t ∈ linLst , which is pre-

cisely the admissible set for ϕst . This completes the in-
duction argument as well as the proof that the specified
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policy is optimal. The optimal cost is given by

V0 = E
∑
s∈U

(ζs0)TXs
0(ζs0) + c0

= E
∑
i∈V
wi→s

(xi0)T(Xs
0){i},{i}(xi0) + c0. (45)

where c0 may be evaluated by starting with cT = 0 and
recursing backwards using (44). Finally, (45) evaluates
to the desired expression (26) because xi0 ∼ N (0,Σi0).
This completes the proof of Theorem 2.

VII-D Proof of Theorem 4

Recall that there are no directed cycles in the network
graph of delay 0. The proof will proceed by induction
over the following partial order:

(t, i) ≺ (τ, j) if
(
t < τ

)
or
(
t = τ, i 6= j, and Dji = 0

)
.

Let Ĩit = {xit} ∪ Rit ∪
⋃
j

0−→i
Mji

t ∪
⋃
j

1−→i
Mji

t−1. If t = 0

and i has no incoming delay-0 edges, then Ĩi0 = Ii0 =
{xi0}. Thus (29), rewritten as ζst ∈ lin(Ĩit), holds at
(t, i) = (0, i).

Fix (t, i). Say that (29) holds for all (τ, j). with
(τ, j) ≺ (t, i). Agent i measures xit directly, by assump-

tion. If j
0−→ i, then (t, j) ≺ (t, i) implies that Mji

t could
be computed and sent by agent j. If t = 0, then the
local memory and incoming delay-1 messages are empty.
If t > 0, then (t − 1, j) ≺ (t, i) implies that the local
memory Rit could be computed by agent i at time t − 1
and that the messagesMji

t−1 could be computed as well.

Thus, Ĩit can be computed.

Now it will be shown that (29) holds at (t, i). Say
that i ∈ s. If t = 0, then ζs0 6= 0 implies that ζs0 is a
linear function of xj0, with Dij = 0. If j = i, then ζs0
can be computed from the local measurement, while if
j 6= i, then ζs0 must have been contained in an incoming
message.

Now say that t > 0. First consider the case that wi 9
s, so that (25b) reduces to

ζst =
∑
r→s

(
Asrt−1 +Bsrt−1K

r
t−1
)
ζrt−1.

If i /∈ r, then ζrt−1 is contained in a delay-1 message

Mji
t−1. So say that i ∈ r. If ζrt−1 ∈ Rit, then it is already

available to agent i. Furthermore, if ζrt−1 /∈ Rit, then it

is contained in some message Mji
t−1, where j

0−→ i. Since
i, j ∈ r ⊂ s, it follows that ζst is contained in message
Mji

t , so the equation above does not need to be com-
puted. It follows that ζst may be computed from the
combination of incoming messages and local memory.

Now consider the case that wi → s. The subvector
(ζst )

s\{i}
can be computed as above using

(ζst )
s\{i}

= Is\{i},s
∑
r→s

(
Asrt−1 +Bsrt−1K

r
t−1
)
ζrt−1.

Since all vectors ζrt with i ∈ r 6= s can be computed as

above, the subvector (ζst )
i

can be computed using the

state decomposition (40): (ζst )
i

= xi−
∑

r3i
r 6=s

(ζrt )
i
. Thus

(29) holds at (t, i) and the proof is complete.

VIII Conclusion

This paper uses dynamic programming to derive opti-
mal policies for a general class of decentralized linear
quadratic state feedback problems. As noted in Sec-
tion V, the solution generalizes many existing works on
decentralized state-feedback control [7, 21, 22]. As dis-
cussed in Section VI, many possible avenues for future
research remain open.

The key technique in the paper is the decomposition
of available information based on the information graph.
The graph is used to specify both dynamics of the con-
troller states, as well as the structure of the Riccati dif-
ference equations required to compute the solution.
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