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Abstract

We present a unified framework for analyzing the con-
vergence of distributed optimization algorithms by for-
mulating a semidefinite program (SDP) which can be ef-
ficiently solved to bound the linear rate of convergence.
Two different SDP formulations are considered. First, we
formulate an SDP that depends explicitly on the gossip
matrix of the network graph. This result provides bounds
that depend explicitly on the graph topology, but the
SDP dimension scales with the size of the graph. Second,
we formulate an SDP that depends implicitly on the gos-
sip matrix via its spectral gap. This result provides coar-
ser bounds, but yields a small SDP that is independent of
graph size. Our approach improves upon existing bounds
for the algorithms we analyzed, and numerical simulati-
ons reveal that our bounds are likely tight. The efficient
and automated nature of our analysis makes it a power-
ful tool for algorithm selection and tuning, and for the
discovery of new algorithms as well.

1 Introduction

Consider n agents located at the nodes of an undirected
graph. Each agent i ∈ {1, . . . , n} has access to a local
function fi : Rd → R and local memory xi. The objective
is for each agent’s local memory to eventually converge
to x?, the minimizer of the average of the functions:

x? := arg min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x). (1)

In this paper, we assume each fi is strongly convex with
parameter mi and has Lipschitz-continuous gradients
with parameter Li. Agents may perform computations
involving their local function fi and local memory xi, and
may exchange information with neighboring agents.

The abstraction above captures a variety of problems
that require distributed computation, such as multi-
agent coordination and distributed estimation and lear-
ning [1,2,5,9]. A simple algorithm is distributed gradient
descent [6], in which agent i uses the update rule:

xk+1
i =

n∑
i=1

wijx
k
j − η∇fi(xki ). (2)

Here, x0i is arbitrary and {wij} is a gossip matrix. That
is, {wij} is symmetric and doubly stochastic. Moreover,

wij > 0 if and only if there is an edge connecting i and
j or if i = j. The iterations (2) combine gradient des-
cent on each fi with diffusion (consensus) on the xi. In
general, this algorithm requires a diminishing stepsize η
in order to converge to x? and convergence happens at a
sublinear rate even when the fi are strongly convex. The
intuition behind this fact is that the optimal point x? is
not necessarily a minimizer of the individual fi so the
agents find themselves taking counterproductive steps.

Since pure consensus achieves linear convergence [12]
and so does centralized gradient descent for strongly con-
vex functions [7,8], one would expect that a combination
of consensus and gradient descent could achieve a linear
rate as well. Recent efforts have focused on devising such
linear-rate algorithms [4, 10, 11]. In the EXTRA algo-
rithm [11], for example, the update equations are

xk+2
i = xk+1

i +

n∑
j=1

wijx
k+1
j − 1

2
xki −

1

2

n∑
j=1

vijx
k
j

− η
(
∇fi(xk+1

i )−∇fi(xki )
)
, (3)

where {wij} and {vij} are gossip matrices, x0i is arbitrary,
and x1i =

∑n
j=1 wijx

0
j − η∇fi(x0i ). The update equati-

ons for EXTRA (3) are considerably more complicated
than those of distributed gradient descent (2). Conse-
quently, algorithm analysis can be problematic. Indeed,
the works [4, 10, 11] each propose algorithms and prove
the existence of a worst-case linear rate, but the proofs
are either non-constructive or yield conservative bounds.

Main contributions. In this paper, we present two
analysis approaches for certifying worst-case linear rates
for distributed optimization algorithms. In both cases,
the analysis reduces to determining the feasibility of a
semidefinite program (SDP) and can be carried out effi-
ciently via computational means.

The paper is organized as follows. In Section 2, we co-
ver notation and prove a key lemma that forms the basis
for subsequent results. In Sections 3 and 4, we present
our two SDPs and use the EXTRA algorithm [11] to il-
lustrate the methodology. In Section 5, we show how our
approach extends to other recently proposed distributed
optimization algorithms.
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2 Preliminaries

This section presents a key lemma we utilize to prove
linear rates of convergence for distributed algorithms.
First, we cover some notation.

Notation. The number of agents in the network is de-
noted by n, and 1n is the n-dimensional all-ones vec-
tor. The r × r identity matrix is represented by Ir, with
subscript omitted for the n × n identity. The p × q ze-
ros matrix is 0p×q. We refer to the class of m-strongly
convex functions with L-Lipschitz gradients as F(m,L).
The domain of f has dimension d. The ith column of the
identity matrix is ei. The Kronecker product between
two matrices A and B is denoted by A⊗B. The P -norm
of a vector x is ‖x‖P := (xTPx)1/2. We now state a
useful quadratic inequality for strongly convex functions
with Lipschitz gradients.

Proposition 1. Suppose f ∈ F(m,L), uk = ∇f(yk),
and u? = ∇f(y?). Then the following inequality holds.[

yk − y?
uk − u?

]T([−2mL m+ L
m+ L −2

]
⊗ Id

)[
yk − y?
uk − u?

]
≥ 0.

Proof. This follows from co-coercivity and Lipschitz
property of the gradient. See for example [3, 7].

The following lemma shows that the state of a discrete-
time linear dynamical system converges linearly (is expo-
nential stable, in the language of control theory) provided
a certain linear matrix inequality is feasible.

Lemma 2. Suppose there exist sequences {ξk, uk, yk}
such that for all k ≥ 0, we have

ξk+1 = Aξk +Buk

yk = Cξk +Duk

0 = Fξk +Guk.

(4)

where uk :=

u
1,k

...
up,k

, yk :=

y
1,k

...
yp,k

, and (A,B,C,D) is

partitioned conformally as

[
A B

C D

]
=


A B1 · · · Bp

C1 D11 · · · D1p

...
...

. . .
...

Cp Dp1 · · · Dpp

 .
Also define the block-rows: Dj :=

[
Dj1 · · · Djp

]
. For

all k ≥ 0 and j = 1, . . . , p, further suppose the inputs uj,k

and outputs yj,k satisfy the quadratic inequalities[
yj,k − yj,?
uj,k − uj,?

]T
M j

[
yj,k − yj,?
uj,k − uj,?

]
≥ 0, (5)

where (ξ?, y?, u?) is a stationary point of (4). Let R be
a matrix whose columns are a basis for null

[
F G

]
. If

there exists ρ > 0, P � 0, and λj ≥ 0 such that

RT

([
ATPA− ρ2P ATPB

BTPA BTPB

]

+

p∑
j=1

λj

[
Cj Dj

0 eTj

]T
M j

[
Cj Dj

0 eTj

])
R � 0 (6)

then ‖ξk+1 − ξ?‖P ≤ ρ ‖ξk − ξ?‖P for all k ≥ 0.

Proof. The columns of R span the nullspace of
[
F G

]
so any vector

[
(ξk − ξ?)T (uk − u?)T

]T
is of the form

Rw for some w. Multiply (6) on the left and right by wT

and w respectively and obtain, after simplification:

(ξk+1 − ξ?)TP (ξk+1 − ξ?)− ρ2(ξk − ξ?)TP (ξk − ξ?)

+

p∑
j=1

λj

[
yj,k − y?
uj,k − u?

]T
M j

[
yj,k − y?
uj,k − u?

]
≤ 0.

The sum is nonnegative by (5), so

(ξk+1 − ξ?)TP (ξk+1 − ξ?) ≤ ρ2(ξk − ξ?)TP (ξk − ξ?)

Take square roots and the desired result follows.

Recursing the result of Lemma 2 implies the linear
rate bound: ‖ξk − ξ?‖P ≤ ρk‖ξ0 − ξ?‖P . We can further
bound this via the condition number of P to obtain

‖ξk − ξ?‖ ≤
√

cond(P ) ρk ‖ξ0 − ξ?‖

If the SDP (6) is feasible for some ρ < 1, then we have
certified a linear convergence rate O(ρk). Note that the
original bound in Lemma 2 is a stronger result because
it also provides a Lyapunov function, which is a monoto-
nically decreasing function of the state.

3 Analysis via the exact gossip matrix

In this section, we present an analysis approach to prove
the linear convergence of EXTRA [11] that depends expli-
citly on the gossip matrices W := {wij} and V := {vij}.
In Section 5, we will see that this approach can be ana-
logously applied to analyze a variety of other algorithms.

Theorem 3 (W-SDP). Suppose fi ∈ F(mi, Li) for i ∈
{1, . . . , n} and consider the EXTRA algorithm (3) with
parameter η and gossip matrices W and V . Define the
matrices A,B,C,D, F,G as follows.

[
A B

C D

]
:=


W + In − 1

2 (V + In) ηIn −ηIn
In 0n 0n 0n
0n 0n 0n In

In 0n 0n 0n

 ,
F :=

[
1T −1T η1T

]
, G := 01×n.

Further define m̄, L̄, and M1 as follows.

m̄ := diag(m1, . . . ,mn), L̄ := diag(L1, . . . , Ln),

M1 :=

[
−2m̄L̄ m̄+ L̄
m̄+ L̄ −2In

]
.
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Consider the SDP (6) of Lemma 2 with p = 1 and the
matrices A,B,C,D, F,G,M1 defined as above. If this
SDP is feasible for some ρ > 0, P � 0, and λ = 1, then
EXTRA converges linearly with a rate of ρ. In other
words, there exists some c > 0 such that

‖xki − x?‖ ≤ c ρk for all i, k.

Proof. Define ξk :=
[
(xk+1)T (xk)T (∇k)T

]T
with

xk+1 :=

x
k+1
1
...

xk+1
n

 , xk :=

x
k
1
...
xkn

 , ∇k :=

∇f1(xk1)
...

∇fn(xkn)

 ,
and input

u1,k := ∇f(y1,k) :=

∇f1(y1,k1 )
...

∇fn(y1,kn )

 .
In these new coordinates, EXTRA (3) takes the form:

ξk+1 = (A⊗ Id)ξk + (B ⊗ Id)u1,k

y1,k = (C ⊗ Id)ξk + (D ⊗ Id)u1,k

The stationary point of the dynamics is given by y1,?i =

x?i = x?, and u1,?i = ∇fi(x?), where x? is the global
optimum (1). Since fi ∈ F(mi, Li), the quadratic bound
of Proposition 1 holds for each agent i. Aggregating the
states of all agents we obtain[

y1,k − y1,?
u1,k − u1,?

]T
M1

[
y1,k − y1,?
u1,k − u1,?

]
≥ 0,

where M1 is defined in the theorem statement. Finally,
the special initialization condition of EXTRA can also be
rewritten as (F ⊗ Id)ξ0 = 0. Moreover,

(F ⊗ Id)ξk+1 = (FA⊗ Id)ξk + (FB⊗ Id)uk = (F ⊗ Id)ξk

and it follows that (F ⊗ Id)ξk + (G ⊗ Id)uk = 0 for all
k. Note that xk,∇k, u1,k, y1,k ∈ Rnd and ξk ∈ R3nd.
In constructing the SDP (6), we may exploit the block-
diagonal structure of the algorithm; there will always
exist a solution of the form P ⊗ Id. See [3, §4.2] for
an expanded explanation. Consequently, Id factors out
entirely and we are left with the SDP (6) with no de-
pendence on d. By Lemma 2, feasibility of (6) certi-
fies that ‖ξk+1 − ξ?‖P ≤ ρ‖ξk − ξ?‖P . Recursing the
bound as explained in Section 2, we obtain ‖ξk − ξ?‖ ≤√

cond(P ) ρk ‖ξ0 − ξ?‖. Note that xki is one of the com-
ponents of ξk and x? is the corresponding component of
ξ?. So by the triangle inequality, we have ‖xki − x?‖ ≤√

condP ρk ‖ξ0 − ξ?‖, as required.

Remark 4. When applying Lemma 2, the SDP (6) is
homogeneous in (P, λ1, . . . , λp). Therefore, we may set
λ1 = 1 without loss of generality. This is why λ = 1 in
the statement of Theorem 3.

For each fixed ρ ≥ 0, the SDP (6) is a linear matrix
inequality (LMI), which is convex and is solved efficiently
using interior-point methods or other means. The smal-
lest rate ρ ≥ 0 for which there exists a feasible P � 0
may be found using a bisection search. Note that the
SDP (6) is 4n × 4n with P ∈ R3n×3n. Thus, the size of
the SDP is proportional to the number of agents (n), but
independent of the size of x ∈ Rd.

Tightness of upper bound. Theorem 3 gives an up-
per bound on the worst case convergence rate. To see
whether the bound is tight, we simulated the EXTRA
algorithm with random initialization for a two-agent net-
work where each local function is defined by fi(x) =
1
2x

TQix − bTi x. The matrices Qi ∈ Rd×d are symmetric
positive semidefinite matrices randomly generated such
that λmin(Qi) = m, λmax(Qi) = L, and the rest of the ei-
genvalues are uniformly distributed in [m,L]. Finally, the
bi are random vectors with components independently
and uniformly distributed on [0, 1]. The gossip matrices

used for simulation were W = V =

[
0.75 0.25
0.25 0.75

]
and

both local functions f1 and f2 have a condition ratio of
L/m = 10. The step size parameter used is η = 1/L.
Figure 1 depicts several algorithm trajectories bounded
above by the linear rate bound obtained from SDP (6),
which appears tight.
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10−10

10−8

10−6

10−4

10−2

100

iteration count k

it
er
a
te

er
ro
r
‖ξ

k
−
ξ
?
‖ P

Simulated trajectories

Upper bound from W -SDP

Figure 1: Numerical simulations of EXTRA for a
network of n = 2 agents on 50 randomly generated
strongly convex quadratics with L/m = 10. The upper
bound on the iterate error is found via the W -SDP (6).

Varying the topology. We also experimented with
changing the graph topology of the network. For a net-
work with n = 6 agents, we consider graphs where each
node has degree 5, 4, 3, and 2, respectively. The gossip
matricesW and V were chosen to be symmetric and shift-
invariant with a second-largest eigenvalue of σ = 2/3.

In Figure 2, we plot the worst-case convergence rate as
a function of stepsize η again for the case where L/m =
10 for all functions. As the connectivity of the graph
grows, EXTRA can tolerate larger stepsizes. The curves
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overlap and all start off the same, but they peel off at
different values of η depending on the graph topology.
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Figure 2: Linear rates obtained for EXTRA found via
the W -SDP (6) as a function of stepsize η for several
network topologies with n = 6 agents and strongly
convex functions with L/m = 10. Results suggest that
worst-case linear rates are graph-dependent.

4 Reduced SDP formulation

The approach of Section 3 and Theorem 3 provides
graph-dependent bounds for worst-case performance, but
involves solving a linear matrix inequality where the ma-
trices have dimension that scales as O(n). In this section,
we show how to reduce the SDP (6) to one that depends
only on the spectral gap of W and V and not on the
number of agents n. In other words, this version of the
SDP gives us a sufficient condition for linear convergence
that is independent of graph size.

Our approach consists of replacing each gossip matrix
by a rank-1 matrix plus a perturbation. In addition to
the sector bound on the ∇f , we impose a bound on the
spectral norm of the perturbation. This enables us to
compute the worst case performance with respect to both
the function and the graph. This formulation ultimately
yields an SDP that decomposes into a pair of coupled
SDPs whose sizes do not depend on the number of agents
n or the domain dimension d.

Proposition 5. Suppose Q is a matrix with spectral
norm ‖Q‖ ≤ σ. Further suppose that uk = Qyk and
u? = Qy?. Then, the following inequality holds.[

yk − y?
uk − u?

]T [
σ2 0
0 −1

] [
yk − y?
uk − u?

]
≥ 0.

Proof. By the definition of the spectral norm, we have:
σ ≥ ‖yk − y?‖/‖uk − u?‖. Squaring both sides and rear-
ranging yields the required result.

The following lemma is the key result that allows us to
further reduce the SDP and make it independent of n.

Lemma 6. Suppose Q1, Q2 ∈ Rm×m and J1, J2 ∈ Rn×n
satisfy J2

1 = J1, J2
2 = J2, and J1J2 = J2J1 = 0. If

Q := Q1⊗J1+Q2⊗J2, then the following are equivalent.

1. Q � 0.

2. Q1 � 0 and Q2 � 0.

Proof. (⇒) Multiply both sides of the definition of Q
by Im⊗Ji. Then Qi⊗Ji � 0 and it follows that Qi � 0.
(⇐) Qi � 0 implies Qi ⊗ Ji � 0. Sum over i.

We now present the main result: a sufficient condition
for linear convergence of EXTRA.

Theorem 7 (σ-SDP). Suppose fi ∈ F(m,L) for i ∈
{1, . . . , n} and consider the EXTRA algorithm (3) with
parameter η and gossip matrices W and V such that the
second-largest eigenvalue of W and V are each less than
or equal to σ. Define matrices Ai, Bi, Ci, Di, Fi, Gi:

[
A1 B1

C1 D1

]
:=



1 −1/2 η −η 1 1
1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
1 0 0 0 0 0
0 −1/2 0 0 0 0


[
A2 B2

C2 D2

]
:=



2 −1 η −η 1 1
1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
1 0 0 0 0 0
0 −1/2 0 0 0 0


[
F1 G1

F2 G2

]
:=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 −1 η 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Further define the matrices M j

i as follows.

M1
1 = M1

2 =

[
−2mL m+ L
m+ L −2

]
M j

1 = M j
2 =

[
σ2 0
0 −1

]
j = 2, 3.

Let Ri be a matrix whose columns are a basis for
null

[
Fi Gi

]
for i = 1, 2. Define J1 := (I − 1

n11T) and
J2 := 1

n11T. If there exists ρ > 0, P1, P2 � 0, and λj ≥ 0
such that the following holds for i = 1, 2:

RT
i

([
AT
i PiAi − ρ2Pi AT

i PiBi
BT
i PiAi BT

i PiBi

]

+

p∑
j=1

λj

[
Cji Dj

i

0 eTj

]T
M j
i

[
Cji Dj

i

0 eTj

])
Ri � 0 (7)
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then EXTRA converges linearly with a rate of ρ. In other
words, there exists some c > 0 such that

‖xki − x?‖ ≤ c ρk for all i, k.

Proof. As in the proof of Theorem 3, we can factor out
a (⊗Id) term, so we omit this step and start with the
dynamics in terms of n only. Write the gossip matrices
as W = 1

n11T + ∆W and V = 1
n11T + ∆V . Define two

additional inputs corresponding to the uncertainties ∆W
and ∆V . Then, EXTRA is given by (4) with[

A B

C D

]

=



In+ 1
n11T − 1

2 (In+ 1
n11T) ηIn −ηIn In In

In 0n 0n 0n 0n 0n
0n 0n 0n In 0n 0n

In 0n 0n 0n 0n 0n
In 0n 0n 0n 0n 0n
0n − 1

2In 0n 0n 0n 0n


(8)

and

u1,k = ∇f(y1,k)

u2,k = (∆W ⊗ Id)y2,k

u3,k = (∆V ⊗ Id)y3,k.

Notice J1 and J2 satisfy J2
1 = J1, J

2
2 = J2, and J1J2 =

J2J1 = 0. Using Kronecker products, (A,B,C,D) for n
agents in (8) can be split into two separate state-space
representations which are independent of n.[

A B

C D

]
=

[
A1 B1

C1 D1

]
⊗ J1 +

[
A2 B2

C2 D2

]
⊗ J2

In this way, the dynamics of (4) with (A1, B1, C1, D1) and
(A2, B2, C2, D2) correspond to the EXTRA update (3).

Since fi ∈ F(m,L), the sector bound on ∇f(y1,k) ap-
plies. Since σ is the second-largest eigenvalue of W and
V , ‖∆W‖ ≤ σ and ‖∆V ‖ ≤ σ. By Propositions 1
and 5, the following quadratic constraints hold for the
three nonlinearities.[

yj,k

uj,k

]T
M j

[
yj,k

uj,k

]
≥ 0 for j = 1, 2, 3

where M j := M j
1 ⊗J1 +M j

2 ⊗J2 and the M j
i are defined

in the theorem statement.

We must also ensure that the perturbations ∆W and
∆V are such that W and V are doubly stochastic. This
amounts to ensuring that 1T∆W = 0 and ∆W1 = 0 and
similarly for ∆V . Equivalently, we can replace C and D
by J1C and J1D respectively and constrain the inputs
for ∆W and ∆V as follows:

1Tuj,k = 0 for j = 2, 3.

Along with the invariant condition for EXTRA, the equa-
lity constraints on u2,k and u3,k can be expressed in the
form of 0 = Fξk +Guk with

F :=

 1T −1T η1T

01×n 01×n 01×n
01×n 01×n 01×n

 ,G :=

01×n 01×n 01×n
01×n 1T 01×n
01×n 01×n 1T


Since null

[
F G

]
= null

[
F G

]T [
F G

]
, we observe

that the nullspace only contains the J2 component. By
Lemma 2, feasibility of (7) certifies the rate bound.

Varying the spectral gap. To demonstrate Theo-
rem 7 in action, we applied the result to EXTRA with
several values of σ in Figure 3 and plotted the worst-case
linear rate versus step size. For each local function in the
network, L/m = 10. Each curve represents worst case
performance of EXTRA over the entire class of graphs
with second-largest eigenvalue σ. In each case, there ex-
ists an optimal step size ηopt that achieves the smallest
worst-case linear rate.
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Figure 3: Linear rates obtained for EXTRA from
the σ-SDP (7) as a function of stepsize η for several
values of σ, which is the second-largest eigenvalue of
the gossip matrices W and V .

5 Evaluating other algorithms

The methodology presented in Sections 3 and 4 can also
be applied to other distributed optimization algorithms.
As a proof of concept, we applied our analysis to the
algorithm of Qu and Li [10] and the NIDS algorithm [4]
using the reduced σ-SDP formulation of Theorem 7.

In the algorithm of Qu and Li [10], each agent performs
a consensus step as well as a gradient estimation step
with update equations

xk+1
i =

n∑
j=1

wijx
k
j − ηski (9a)

sk+1
i =

n∑
j=1

vijs
k
j +∇fi(xk+1

i )−∇fi(xki ) (9b)
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where x0i is arbitrary and si(0) = ∇fi(xi(0)). The NIDS
algorithm [4] update has a structure similar to EXTRA
and is given by

xk+2
i = xk+1

i +

n∑
j=1

wijx
k+1
j

− 1

2

n∑
j=1

(1 + vij)(x
k
j + η(∇fi(xk+1

i )−∇fi(xki ))) (10)

where x0i is arbitrary, and x1i = x0i − η∇fi(x0i ).
For both algorithms above, we defined the matrices
(A,B,C,D, F,G) corresponding to the different algo-
rithm dynamics. These results are displayed in Table 1.
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Qu & Li

EXTRA

NIDS

Figure 4: Worst-case linear rates obtained from the
σ-SDP (7) as a function of σ using numerically deter-
mined optimal stepsizes and L/m = 10.

For each of the three algorithms considered in this pa-
per, we applied Theorem 7 to obtain worst case linear
rates for different choices of σ using the optimal step
size ηopt. In Figure 4, worst-case linear rates obtained
from (6) are plotted against σ and reveal that as σ in-
creases, rate bounds worsen. All local functions in the
network are assumed to be in F(m,L) with L/m = 10.
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Algorithm

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

] [
F1 G1

F2 G2

]

EXTRA [11]



1 − 1
2 η −η 1 1

1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
1 0 0 0 0 0
0 − 1

2 0 0 0 0





2 −1 η −η 1 1
1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 −1 η 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Qu and Li [10]



0 −η 0 0 1 0
0 0 −1 1 0 1
0 0 0 1 0 0

0 −η 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0





1 −η 0 0 1 0
0 1 −1 1 0 1
0 0 0 1 0 0

1 −η 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 1 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



NIDS [4]



1 − 1
2

η
2 −η2 1 1

1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
1 0 0 0 0 0
0 − 1

2
η
2 −η2 0 0





2 −1 η −η 1 1
1 0 0 0 0 0
0 0 0 1 0 0

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 −1 η 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Table 1: Matrix parameters used in SDPs (7) for EXTRA [11], the algorithm of Qu and Li [10], and NIDS [4]. Using
these definitions, Theorem 7 can be applied to obtain linear rates of convergence.
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