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Abstract

In this paper, we consider a fully decentralized control
problem with two dynamically decoupled agents. The
objective is to design a state-feedback controller for each
agent such that a global quadratic cost is minimized. No
communication, explicit or implicit, is permitted between
the agents. However, the performance of the agents is
coupled via the cost function as well as the process noise.
We provide an explicit state-space construction of the
optimal controllers, showing that the optimal controllers
are dynamic, where the number of states depends on the
joint covariance matrix of the process noise. The key
step is a novel decomposition of the noise covariance ma-
trix, which allows the convex program associated with
the controller synthesis to be split into simpler problems
and thereby solved.

1 Introduction

In decentralized control problems, the goal is to achieve
global performance by designing local feedback policies.
This happens frequently in practice. Examples include
computer networks, cooperative tasks with autonomous
robots, and power distribution micro-grids. The key fea-
ture of these systems is that individual agents must make
decisions with only partial knowledge of the whole sys-
tem’s state because allowing full knowledge would be in-
feasible or impossible.

In this paper, we consider the simplest case of maxi-
mal decentralization; two agents cooperate to optimize a
global objective, but are dynamically decoupled and un-
able to communicate with each other. A block diagram is
shown in Figure 1, and state equations are given below.

Pi : ẋi = Aixi +Biui + wi

Ki : ui = γi(Xi)
for i = 1, 2 (1)

where Xi is the past history of the state xi. As depicted
in Figure 1, both systems are only coupled externally ;
they are driven by correlated noise, and the quadratic
cost function that must be optimized is coupled.

Given dynamically decoupled agents that cannot com-
municate, one might be tempted to think that cooper-
ation is impossible. In other words, the two controllers
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Figure 1: Block diagram showing the decentralized con-
trol architecture considered in this paper. Two feedback
systems are coupled only through process noise and cost
function. The goal is to jointly design state-feedback con-
trollers K1 and K2 that minimize the expected cost.

may be designed separately without any loss of perfor-
mance. There are two special cases for which this is true.

1) Coupled cost and independent noise. Despite a cou-
pled cost, the agents have no way of estimating each
other’s state. The best any agent can do is design
their control policy under the assumption that the
other agent has zero state and input.

2) Decoupled cost and correlated noise. With a decou-
pled cost, actions of one agent do not alter the cost
seen by the other agent. Even if the agents were to
know each other’s state, that information wouldn’t be
useful. Agents might as well assume they are alone
when they design their control policy.

Roughly speaking, being able to affect all parts of the cost
function isn’t useful if you know nothing about the other
agent’s state. Similarly, knowing the other agent’s state
isn’t useful if you have no power to affect the associated
part of the cost function. In both of the cases listed
above, the optimal policy for each agent is a static state-
feedback controller.

In this paper, we solve the interesting case where the
cost function is coupled and the noises are correlated.
It turns out that in general, the optimal controller is
dynamic, and its order depends on the extent to which
the noises are correlated.

In the remainder of this section, we survey some rele-
vant works from the literature and explain some of the
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notation and conventions used in the paper. In Section 2,
we formally state the problem. In Section 3, we convert
the problem to a useful model-matching form, which is
the starting point for our solution approach. We present
our main results in Sections 4 and 5, and give an illus-
trative example in Section 6. Finally, we end with some
concluding remarks in Section 7.

1.1 Previous Work

The underlying controller synthesis problem considered
in this paper is an example of a dynamic team decision
problem. Due to the completely decentralized nature of
the information structure, it is in fact a trivial example of
a partially nested architecture [1]. Therefore, the optimal
control policy for each agent will be linear. However,
linearity alone does not guarantee that the policies will
have finite memory.

It was shown more recently that a broad class of decen-
tralized control problems, including the partially nested
cases, can be convexified, and are amenable to a variety
of numerical approaches [5,6]. When the decentralization
is characterized by a sparsity constraint on the plant and
controller transfer matrices, the convex program takes
the form of a structured model-matching problem. for
the two-agent architecture considered in this paper, the
model-matching problem is given by (6).

Solutions to such problems can be explicitly con-
structed via vectorization [7]. However, this approach
generally produces controllers with very large state di-
mension, and no apparent way to simplify them. One
exception is the recent work of Kristalny and Shah [2],
in which the authors find a minimal state-space solution
for a variant of the model-matching problem considered
herein (6) using a vectorization approach. An important
difference with their work is that they assume a fully di-
agonal controller, rather than block-diagonal one. It is
not clear how one would extend their approach to the
case of non-SISO controllers.

State-feedback control under sparsity constraints has
been well-studied, but typically under the assumption
that the agents interact through dynamic coupling or
explicit communication. The two-agent problem with
one-way communication is solved in [9] and the n-agent
problem with more general interconnection topologies is
solved in [8]. Both of these works assume that the noise
injected into each plant is independent.

The assumption of independent noise is sometimes
not restrictive. For example, the general case of two
agents with one-way communication and output feed-
back is solved in [3], and the solution is no more compli-
cated when the noise is correlated between plants. How-
ever, the correlated noise makes a big difference when
the agents cannot communicate explicitly or implicitly.
As we show in this paper, such cases lead to an optimal
controller whose state dimension depends on the extent
to which the noise injected into both plants is correlated.

1.2 Preliminaries

The real and complex numbers are denoted by R and C,
respectively. The imaginary unit is j, and we denote the
imaginary axis by jR. A square matrix A ∈ Rn×n is
Hurwitz if all of its eigenvalues have a strictly negative
real part. The set L2(jR), or simply L2, is a Hilbert
space of Lebesgue measurable matrix-valued functions
F : jR 7→ Cm×n with the inner product

〈F,G〉 =
1

2π

∫ ∞
−∞

Trace [F ∗(jω)G(jω)] dω

such that the inner product induced norm ‖F‖22 = 〈F, F 〉
is bounded. We will sometimes write Lm×n

2 to be explicit
about the matrix dimensions. As is standard, H2 is a
closed subspace of L2 with matrix functions analytic in
the open right-half plane. H⊥2 is the orthogonal comple-
ment of H2 in L2. We use the prefix R to indicate the
subset of proper real rational functions. So RL2 is the
set of strictly proper rational transfer functions with no
poles on the imaginary axis, and RH2 is the stable sub-
space of RL2. It is useful to extend these sets to allow for
transfer functions that are proper but not strictly proper.
To this end, we have RL2 ⊂ RL∞ and the corresponding
RH2 ⊂ RH∞. If G ∈ RL∞, then G has a state-space
realization

G =

[
A B

C D

]
= D + C(sI −A)−1B

If this realization is chosen to be stabilizable and de-
tectable, then G ∈ RH∞ if and only if A is Hurwitz, and
G ∈ RH2 if and only if A is Hurwitz and D = 0. For a
thorough introduction to these topics, see [10].

A family of state-space realizations is called generically
minimal if at least one member of the family is minimal.
For example, consider the two families

T1 =

 A1 0 B1

0 A2 B2

I I 0

 and T2 =

 A1 0 B1

0 A2 0

I I 0


where Ai ∈ Rni×ni and Bi ∈ Rni×mi are free parame-
ters. Then T1 is generically minimal, even though it is
reducible when A1 = A2. However, T2 is not generically
minimal.

Many equations in this paper are expressed in terms of
the solutions to Algebraic Riccati Equations (AREs). We
introduce the notation K = care(A,B,C,D) to mean
that K = −(DTD)−1(BTX +DTC), where X > 0 is the
stabilizing solution to the ARE

ATX +XA+ CTC

− (XB + CTD)(DTD)−1(BTX +DTC) = 0

Whenever this notation is invoked, there will always exist
a unique stabilizing solution to the associated ARE.
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2 Problem Statement

We now give a formal description of the problem illus-
trated in Figure 1. Consider the continuous-time linear
time-invariant dynamical system defined by the state-
space equations[

ẋ1
ẋ2

]
=

[
A1 0
0 A2

] [
x1
x2

]
+

[
B1 0
0 B2

] [
u1
u2

]
+

[
N1

N2

]
e

z =
[
C1 C2

] [x1
x2

]
+
[
D1 D2

] [u1
u2

] (2)

where e is white Gaussian noise. The noise terms entering
each subsystem wi = Nie are therefore jointly Gaussian.
The states and inputs are partitioned as xi(t) ∈ Rni and
ui(t) ∈ Rmi . More compactly,

ẋ = Ax+Bu+Ne

z = Cx+Du

where A ∈ Rn×n and B ∈ Rn×m are block-diagonal, but
C, D, and N may be full. The two systems are coupled
through the correlated noise that drives them. This fact
is characterized by the joint covariance matrix

cov

[
w1

w2

]
=

[
W11 W12

W21 W22

]
= NNT (3)

The two systems are also coupled through the infinite-
horizon quadratic cost

J =

(
lim

T→∞

1

T
E

∫ T

0

‖z‖2 dt

)1/2

(4)

We seek a fully decentralized linear time-invariant con-
trol policy that minimizes (4). In other words, we are
interested in controllers of the form:

Ki :
q̇i = AKiqi +BKixi

ui = CKiqi +DKixi
for i = 1, 2 (5)

We make several assumptions regarding the matrices A,
B, C, D, and N , and we list them below.

A1) A is Hurwitz.

A2) D has full column rank.

A3)

[
A− jωI B

C D

]
has full column rank for all ω ∈ R.

A4) N has full row rank.

Assumption A1 is not restrictive. To see why, notice that
(A,B) being stabilizable is a necessary condition for the
existence of a stabilizing control policy. Since A and B
are block-diagonal, the PBH test implies that this con-
dition is equivalent to (A1, B1) and (A2, B2) being sta-
bilizable. Therefore, if Ai is not Hurwitz, we can change
coordinates by setting ui = Fixi + ũi, where Fi is cho-
sen such that Ai + BiFi is Hurwitz. The original and
transformed subsystems for i = 1, 2 are:

ẋi = Aixi +Biui

q̇i = AKiqi +BKixi

ui = CKiqi +DKixi

⇐⇒
ẋi = (Ai +BiFi)xi +Biũi

q̇i = AKiqi +BKixi

ũi = CKiqi + (DKi − Fi)xi

So the system on the left is internally stable if and only if
the one on the right is as well. Assumptions A2–A4 are
standard for the centralized LQR problem, and guarantee
the existence and uniqueness of an optimal controller [10].

3 Conversion to Model-Matching Form

The state-feedback control problem of Section 2 is a spe-
cial case of a class of structured model-matching prob-
lems. Suppose F ,G ∈ RH∞, and N is a real ma-
trix. The decentralized two-player model-matching prob-
lem with one-sided dynamics is given by

minimize

∥∥∥∥ F + G
[
Q1 0
0 Q2

]
N

∥∥∥∥
2

subject to Q1,Q2 ∈ RH2

(6)

We can transform the state-feedback problem of Section 2
into a problem of type (6) via the following lemma.

Lemma 1. Suppose Assumptions A1–A4 hold for the
decentralized LQR problem (2)–(5). Define F and G as

F =

[
A N

C 0

]
and G =

[
A B

C D

]
(7)

Consider the model-matching problem (6), with dimen-
sions Qi ∈ RHmi×ni

2 . Suppose its solution is given by

Qi =

[
Âi B̂i

Ĉi 0

]
for i = 1, 2. (8)

This solution is related to the solution ui = Kixi for
i = 1, 2 of the original decentralized LQR problem via

Ki =

[
Âi − B̂iBiĈi (Âi − B̂iBiĈi)B̂i − B̂iAi

Ĉi ĈiB̂i

]
(9)

Proof. We proceed by showing that the cost functions
for both optimization problems are the same, that their
domains are the same, and that Q defined in (8) cor-
responds to K defined in (9). The map from inputs to
outputs (e, u) 7→ (z, x) is given by

[
z
x

]
=

[
P11 P12

P21 P22

] [
e
u

]
=

 A N B

C 0 D
I 0 0

[e
u

]
(10)

where e is white Gaussian noise and w = Ne. Note that
P11 = F and P12 = G. Consider the relation

Q = K (I − P22K)
−1

(sI −A)−1 (11)

It is straightforward to verify that (11) is satisfied by Q
and K defined in (8) and (9) respectively. Substituting
u = Kx, the closed-loop map w 7→ z is

Tzw = P11 + P12K (I − P22K)
−1 P21

= F + GQN
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The cost function (4) is equal to the H2-norm of Tzw,
so we have verified that the cost functions are the same,
and that K corresponds to Q via (8)–(9) and (11).

Now, we show that the domains of both optimization
problems are the same. By Assumption A1, A is Hurwitz.
Thus, the Pij are stable, and K stabilizes P if and only

if K (I − P22K)
−1

is stable [10]. So for any stabilizing K,
if follows from (11) that Q is stable. Conversely, the K
defined in (9) is stabilizing, because we can verify by di-

rect substitution that K (I − P22K)
−1

is stable whenever
Âi is Hurwitz. Finally, note that P22 is block-diagonal,
so Q is block-diagonal whenever K is block-diagonal.

Note that Lemma 1 produces a realization for K in (9)
that has the same order as the realization for Q in (8),
but it does not guarantee that the realization for K will
be minimal if we started with a minimal realization for
Q. Indeed, the two special cases listed in Section 1 have
optimal controllers that are static, yet the corresponding
Qi are dynamic.

4 Model-Matching Solution

In this section, we present the solution to the model-
matching problem given in (6). We suppose F ,G ∈ RH∞
have a stabilizable and detectable joint realization

[
F G

]
=

[
A Γ B

C 0 D

]
(12)

When the model-matching problem comes from the de-
centralized LQR problem (2)–(5) as in Lemma 1, A and
B are block-diagonal and Γ = N . Our approach does not
rely on these assumptions, so we will drop them in favor
of solving the more general model-matching problem for
which A and B have no structure, and Γ is arbitrary. In
addition to Assumptions A1–A4, we also assume that

NNT = W =

[
I Y
Y T I

]
(13)

There is no loss of generality in this assumption, because
W > 0 by Assumption A4, and we can scale Q1 and Q2

by W
1/2
11 and W

1/2
22 respectively. The key step in solving

the model-matching problem is a decomposition of W ,
which begins with the full singular value decomposition

Y =
[
U1 Ū1

] [Σ 0
0 0

] [
U2 Ū2

]T
(14)

where
[
Ui Ūi

]
is orthogonal, Σ is a diagonal matrix with

entries σ1, . . . , σr, and r = rank(Y ). Note that because
W > 0, we have 1 > σ1 ≥ · · · ≥ σr > 0.

We also require some new definitions. First, define
ek ∈ Rr×1 for k = 1, . . . , r to be the kth unit vector, with
1 in the kth position and 0 everywhere else. Similarly,

define block versions E1 =
[
I 0

]T
and E2 =

[
0 I

]T
,

where the sizes of the blocks are inferred by context. Fi-
nally, define

Ã =

[
A

A

]
, B̃ =

[
BE1E

T
1

BE2E
T
2

]
, βk =

√
σk

1− σk
,

C̃k =

βkC βkC
C 0
0 C

 , D̃k =

 βkD
DE1E

T
1

DE2E
T
2


Ñk =

[
I σkI
σkI I

]−1 [
ΓNTE1U1

ΓNTE2U2

]
Ki = care(A,BEi, C,DEi)

K̃k = care(Ã, B̃, C̃k, D̃k)

(15)

where i = 1, 2 and k = 1, . . . , r. The main result of this
section is given below, and a complete proof is provided
in Section 8.

Theorem 2. Suppose F ,G ∈ RH∞ have a stabilizable
and detectable joint realization given by (12), N is a real
matrix of the form (13), and Assumptions A1–A4 hold.
The solution to

minimize

∥∥∥∥ F + G
[
Q1 0
0 Q2

]
N

∥∥∥∥
2

subject to Q1,Q2 ∈ RH2

is given by

Qi =


Ã+ B̃K̃1 Ñ1e1e

T
1U

T
i

. . .
...

Ã+ B̃K̃r Ñrere
T
rU

T
i

A+BEiKi ΓNTEiŪiŪ
T
i

ET
i K̃1 · · · ET

i K̃r Ki 0


where the relevant quantities are defined in (14)–(15).
The realization for Qi given above is generically minimal.

The formula for Qi in Theorem 2 becomes simpler
for boundary values of r. Since r = rank(Y ) and
Y ∈ Rn1×n2 , we have 0 ≤ r ≤ min(n1, n2). When r = 0,
the Ã + B̃K̃k terms vanish. Similarly, when r = ni, the
A+BEiKi term vanishes. In general,

# of states in Qi =

{
2nr + n if 0 ≤ r < min(n1, n2)

2nr if r = ni

5 State-Feedback Solution

In this section, we combine Theorem 2 and Lemma 1 to
give a complete solution to the state-feedback problem
of Section 2. Upon reintroduction of the constraints that
Γ = N and that A and B are block-diagonal, the solu-
tion in Theorem 2 simplifies considerably. Recalling the
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partitions of the matrices introduced in (2), define

Čk =

 βkCC1E
T
1

C2E
T
2

 Ďk =

 βkD
D1E

T
1

D2E
T
2

 Ň =

[
U1

U2

]
K̂i = care(Ai, Bi, Ci, Di)

Ǩk = care(A,B, Čk, Ďk)

AL =

A+BǨ1

. . .

A+BǨr

BLi =

Ňe1e
T
1U

T
i

...
Ňere

T
rU

T
i


CKi =

[
ET

i Ǩ1 − K̂iE
T
i · · · ET

i Ǩr − K̂iE
T
i

]
DKi = K̂iŪiŪ

T
i + ET

i

r∑
k=1

ǨkŇeke
T
kU

T
i

(16)

where i = 1, 2 and k = 1, . . . , r. Recall that βk was
previously defined in (15). The main result of this section
is below, and a complete proof is provided in Section 8.

Theorem 3. Suppose Assumptions A1–A4 hold for the
decentralized LQR problem (2)–(5). Further suppose that
N satisfies (13)–(14). The optimal decentralized LQR
controller ui = Kixi is given by

Ki =

[
AL −BLiBiCKi ALBLi −BLi(Ai +BiDKi)

CKi DKi

]
where the relevant quantities are defined in (16). The
realization for Ki given above is generically minimal if
r < min(n1, n2).

For the case where r = ni, an additional reduction can
be made. See Section 8 for details. In general,

# of states in Ki =

{
nr if 0 ≤ r < min(n1, n2)

nr − ni if r = ni

As mentioned in Section 1, the case of uncorrelated noise
leads to a static optimal controller. To verify this, note
that uncorrelated noise implies that Y = 0, so r = 0.
In this case, Ūi is square and orthogonal, so ŪiŪ

T
i = I.

It follows that the optimal controller is Ki = DKi =
K̂i. This is precisely the static state-feedback policy each
agent would employ if they were ignoring the other agent.

6 Example

In this section, we illustrate the results of this paper by
solving a simple decentralized LQR problem. Suppose
two ships move on parallel trajectories with velocities v1
and v2 respectively, subject to the dynamics

v̇1 = −2v1 + u1 + w1

v̇2 = −3v2 + u2 + w2

The Gaussian disturbances wi have unit variance, and are
correlated as E(w1w2) = 0.8. Each ship knows its own
velocity vi, and must control its thruster input ui. The

objective is for the ships to match their velocities while
keeping thruster effort low. We use the cost function

J =

(
lim

T→∞

1

T
E

∫ T

0

[
(v1 − v2)2 + 0.01(u21 + u22)

]
dt

)1/2

The following table compares various policies.

Policy Control Law Cost

No control u1 = u2 = 0 0.3109

Selfish
u1 = −8.1980v1

u2 = −7.4403v2
0.2808

Optimal

q̇1 = −13.79q1 − 0.2659v1

u1 = 4.255q1 − 3.013v1

q̇2 = −13.52q2 + 0.2659v2

u2 = 4.255q2 − 2.279v2

0.2300

Centralized
u1 = −6.3095v1 + 5.9121v2

u2 = 5.9121v1 − 5.6051v2
0.1567

The selfish policy assumes the ships ignore each other.
This amounts to solving two centralized LQR problems,
and the solution is ui = K̂i. The optimal decentralized
policy was found using Theorem 3. As expected, each
ship’s controller is dynamic with a state dimension of
1 because r = n1 = n2 = 1. Finally, the centralized
policy allows the ships to know each other’s velocities. It
is given by u = Kv, where K = care(A,B,C,D). As
expected, the centralized policy is the best one, and the
optimal decentralized policy outperforms the selfish one.

7 Concluding Remarks

We presented an explicit state-space solution to a class
of fully decentralized state-feedback problems with two
agents. When the cost is coupled between both agents,
the optimal controller is dynamic and has a state dimen-
sion that depends on the extent to which the noises af-
fecting the agents are correlated.

It is not clear how one might extend the solution
presented herein to problems involving more than two
agents, or to output feedback architectures where agents
only have access to noisy measurements of their own
states. These are possible avenues for future research.

8 Proofs of the Main Results

Proof of Theorem 2. It is convenient to introduce
frequency-domain versions of Assumptions A1–A4.

B1) F is strictly proper.

B2) G(jω) has full column-rank for all ω ∈ R,
including ω =∞.

B3) N has full row-rank.
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If the joint realization for
[
F G

]
in (12) is chosen to be

a stabilizable and detectable, Assumptions A1–A4 are
equivalent to Assumptions B1–B3. Again, these assump-
tions are made to guarantee the existence and uniqueness
of a solution to (6).

The model-matching problem (6) has an optimality
condition, which follows from embedding the problem
into the Hilbert space L2 and using the projection theo-
rem [4]. We state the result as a proposition.

Proposition 4. Suppose F ,G ∈ RH∞, N is a real ma-
trix, and Assumptions B1–B3 are satisfied. Then Q1,Q2

are optimal for (6) if and only if

G∗FNT + G∗G
[
Q1 0
0 Q2

]
NNT ∈

[
H⊥2 L2

L2 H⊥2

]
(17)

Pick out the 11 and 22 blocks of (17), and substitute
the decomposition of N from (13)–(14).

[
G∗FNT

]
11

+ ET
1 G∗G

[
Q1

Q2U2ΣUT
1

]
∈ H⊥2 (18)

[
G∗FNT

]
22

+ ET
2 G∗G

[
Q1U1ΣUT

2

Q2

]
∈ H⊥2 (19)

Since Ūi is an orthogonal completion of Ui, i.e.
[
Ui Ūi

]
is orthogonal, we may write

Qi =
(
QiUi

)
UT
i +

(
QiŪi

)
ŪT
i for i = 1, 2 (20)

Rather than solving for Qi, we will solve for the projec-
tions QiUi and QiŪi, and reconstruct Qi via (20). Mul-
tiplication of (18)–(19) by the Ūi yields the following.[

G∗FNT
]
11
Ū1 +

[
G∗G

]
11

(
Q1Ū1

)
∈ H⊥2 (21)[

G∗FNT
]
22
Ū2 +

[
G∗G

]
22

(
Q2Ū2

)
∈ H⊥2 (22)

Multiplication of (18)–(19) by the Ui yields the following.

[
G∗FNT

]
11
U1 + ET

1 G∗G
[
Q1U1

Q2U2Σ

]
∈ H⊥2 (23)

[
G∗FNT

]
22
U2 + ET

2 G∗G
[
Q1U1Σ
Q2U2

]
∈ H⊥2 (24)

Taking advantage of the diagonal form of Σ, we consider
(23)–(24) one column at a time. For k = 1, . . . , r,

[
G∗FNT

]
11
U1ek + ET

1 G∗G
[
Q1U1ek

σkQ2U2ek

]
∈ H⊥2 (25)

[
G∗FNT

]
22
U2ek + ET

2 G∗G
[
σkQ1U1ek
Q2U2ek

]
∈ H⊥2 (26)

Now combine (25)–(26) into a single equation[[
G∗FNT

]
11
U1[

G∗FNT
]
22
U2

]
ek

+

[
[G∗G]11 σk[G∗G]12

σk[G∗G]21 [G∗G]22

] [
Q1U1ek
Q2U2ek

]
∈ H⊥2 (27)

Each of the optimality conditions (21)–(22) and (27)
for k = 1, . . . , r correspond to independent centralized
model-matching problem. Namely, (21) corresponds to

minimize
∥∥∥FNTE1Ū1 + GE1

(
Q1Ū1

)∥∥∥
2

subject to
(
Q1Ū1

)
∈ RH2

(28)

and (22) corresponds to

minimize
∥∥∥FNTE2Ū2 + GE2

(
Q2Ū2

)∥∥∥
2

subject to
(
Q2Ū2

)
∈ RH2

(29)

Finally, for k = 1, . . . , r, Equation (27) corresponds to

min

∥∥∥∥∥∥
 0
FNTE1U1ek
FNTE2U2ek

+

√σk(1− σk)G
(1− σk)GE1E

T
1

(1− σk)GE2E
T
2

[Q1U1ek
Q2U2ek

]∥∥∥∥∥∥
2

s.t.

[
Q1U1ek
Q2U2ek

]
∈ RH2

(30)
The optimization problems (28)–(30) are centralized,
meaning that unlike (6), there are no sparsity constraints
on the optimization variables. The solution to such prob-
lems is well-known, and stated below as a proposition.

Proposition 5. Suppose F ,G ∈ RH∞ satisfy Assump-
tions B1–B2, and have a joint stabilizable and detectable
realization given by (12). The model-matching problem

minimize
∥∥F + GQ

∥∥
2

subject to Q ∈ RH2

(31)

has a unique solution, given by

Qopt =

[
A+BK Γ

K 0

]
where K = care(A,B,C,D).

We now have all the ingredients required to solve the
decentralized model-matching problem with one-sided
dynamics (6). First, apply Proposition 5 to (28)–(29).
We find that the optimal QŪ1 and QŪ2 are given by

QiŪi =

[
A+BEiKi ΓNTEiŪi

Ki 0

]
for i = 1, 2 (32)

where Ki = care(A,BEi, C,DEi). Next, apply Propo-
sition 5 to (30). One can show after some algebraic ma-
nipulation that the kth column of the optimal QU1 and
QU2 is given by[
Q1U1ek
Q2U2ek

]
=

[
Ã+ B̃K̃k Ñkek

K̃k 0

]
for k = 1, . . . , r (33)

where K̃k = care(Ã, B̃, C̃k, D̃k), and the new quantities
are defined in (15). Finally, we obtain the optimalQ1 and
Q2 by substituting (32) and (33) into (20) and assembling
the augmented state-space realizations.

One can verify that the realizations obtained for Q1

and Q2 are generically minimal by testing problem in-
stances generated from random data.
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Proof of Theorem 3. First, consider the optimal
QiŪi from (32). Now impose the constraint that A and
B are block-diagonal of the form (2), and that Γ = N .
Making use of the identities (13)–(14), we can simplify
the expression to

QiŪi =

[
Ai +BiK̂i Ūi

K̂i 0

]
for i = 1, 2 (34)

where K̂i = care(Ai, Bi, Ci, Di). Now consider the op-
timal QiUi from (33). Similar algebraic manipulations
reveal the simpler formula[
Q1U1ek
Q2U2ek

]
=

[
A+BǨk Ňek

Ǩk 0

]
for k = 1, . . . , r (35)

where Ǩk = care(A,B, Čk, Ďk). Note that in (34)–(35),
not only does the number of states decrease when com-
pared to (32)–(33), but the size of the associated AREs
shrinks as well. In the case where r < min(n1, n2), the
expression for Qi from Theorem 2 simplifies to

Qi =


A+BǨ1 Ňe1e

T
1U

T
i

. . .
...

A+BǨr Ňere
T
rU

T
i

Ai +BiK̂i ŪiŪ
T
i

ET
i Ǩ1 · · · ET

i Ǩr K̂i 0


If r = ni, then the last block of states in Qi, which
are associated with Ai + BiK̂i, vanish. We may now
apply Lemma 1 to find a state-space realization of the
solution to the state-feedback problem. It turns out
that if we directly apply Lemma 1, the resulting Ki

is not generically minimal. This fact is made evi-
dent by transforming Ki via (AKi, BKi, CKi, DKi) 7→
(TAKiT

−1, TBKi, CKiT
−1, DKi), where

T =


I · · · 0 0
...

. . .
...

...
0 · · · I 0
ET

i · · · ET
i I


In these new coordinates, the last block of states, which
has size ni, is not controllable and may be removed.

One can verify that the final realizations obtained for
K1 and K2 are generically minimal when r < min(n1, n2)
by testing problem instances generated from random
data. For the extreme case where r = n1, an additional
reduction can be made. A straightforward computation
shows that under the transformation

T̄ =


I I · · · I
0 I · · · 0
...

...
. . .

...
0 0 · · · I


the first n1 states are not controllable and may be re-
moved. Therefore, the state dimension of the optimal K1

is reduced by n1. Similarly, if r = n2, the state dimension
of K2 is further reduced by n2.
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