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Convex optimization offers an attractive approach to the physical design of aerospace vehicles
due to its ability to quickly identify global optima to relatively complex problems. Building
on previous work, we show a significant improvement in optimal supersonic drag coefficient
for airfoils parameterized by cubic splines, versus cubic polynomials. In particular we derive
convex expressions for the supersonic lift and drag coefficients of thin airfoils expressed as cubic
splines, as well as subsonic lift and moment coefficients for the same. We compare the results
of globally optimal designs parameterized by cubic polynomials and cubic splines, showing
improvements in drag performance of approximately 20-30%. These designs are computed
typically in single digit seconds using commodity hardware and open source software tools.

I. Introduction

In this paper, we extend our prior work[1] on the convex optimization of thin airfoils using cubic polynomials to
include airfoils defined by cubic splines. We refer the reader to our previous paper for a general primer on convex

optimization and its applicability to Aerodynamic Shape Optimization (ASO) as well as background references.
As before, we explore the benefits and limitations of casting conceptual airfoil design as a convex optimization

problem. Recall that a convex optimization problem takes the general form

minimize
𝑥

𝑓0 (𝑥)

subject to 𝑓𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑚, (1)

where 𝑥 ∈ R𝑛 is a vector of design variables and the 𝑓𝑖 : R𝑛 → R are convex objective and constraint functions. A
function 𝑓 : R𝑛 → R is convex if the domain of 𝑓 (dom 𝑓 ) is a convex set and if for all 𝑥, 𝑦 ∈ dom 𝑓 , with 0 ≤ \ ≤ 1,

𝑓 (\𝑥 + (1 − \)𝑦) ≤ \ 𝑓 (𝑥) + (1 − \) 𝑓 (𝑦). (2)

From a geometric point of view, this describes a function that lies below the line segment connecting any two points of
its graph. For a comprehensive discussion of convex optimization and convex functions we refer the reader to the book
by Boyd and Vandenberghe [2]. A list of common convex functions and their domains is included in Table 1.

Splines have been used extensively in the design of airfoils and other aerodynamic shapes. For example, Song
and Keane[3], Masters et al.[4], and Sripawadkul, Padulo, and Guenov[5] all provide excellent overviews of shape
paramerization techniques for aerospace shape optimization, including the use of splines. The well-known Class-Shape-
Transformation (CST) method [6–8] for shape parameterization employs Bernstein polynomials. In [9], Rajnarayan et al
describe a universal shape parameterization for airfoils using B-splines. Also, in [10], Li and Krist discuss the benefits
of incorporating curvature-based smoothing techniques in the optimization of transonic airfoils. In general, the use of
various types of splines, including surface and volumetric, has been well studied in the design of airfoils and more
general aerodynamic shapes.

In this paper, we make several contributions. First, we derive closed-form solutions for lift, drag, and moment
coefficients using thin-airfoil theory, across several flow regimes, for the case of airfoils defined by cubic splines. We
also show that important performance indicators, under these assumptions, are convex functions. Finally, we present
case studies that illustrate the benefits of a cubic spline approach and compare results versus the cubic polynomial case.
Through these case studies, we also assess the impact of important parameters such as number of spline segments and
curvature regularization for fair surface design.
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Function Definition Domain Curvature

Summation
∑

𝑖 𝑗 𝑋𝑖 𝑗 𝑋 ∈ R𝑚×𝑛 convex
Max max𝑖 𝑗 {𝑋𝑖 𝑗 } 𝑋 ∈ R𝑚×𝑛 convex
Min min𝑖 𝑗 {𝑋𝑖 𝑗 } 𝑋 ∈ R𝑚×𝑛 concave

2-norm
√︃∑

𝑖 𝑥
2
𝑖

𝑥 ∈ R𝑛 convex
Positive semidefinite quadratic form 𝑥𝑇𝑃𝑥 𝑥 ∈ R𝑛, 𝑃 ⪰ 0 convex
Quadratic over linear 𝑥𝑇𝑥/𝑦 𝑥 ∈ R𝑛, 𝑦 > 0 convex
Inverse positive 1/𝑥 𝑥 > 0 convex

Table 1 Representative convex functions

II. Application of Thin-Airfoil Theory to Cubic Spline Airfoils
In this work, we consider cubic spline airfoils, which are airfoils defined by separate cubic splines representing

the upper and lower surfaces. These splines are defined by a series of cubic polynomials, which are constrained to
have 𝐶2 continuity across the airfoil surface[11]. The polynomials are each defined over a subset of the knot vector,
𝑥𝑘 = [𝑥𝑘0 , 𝑥𝑘1 , . . . , 𝑥𝑘𝑛 ]. Our approach is general and can be used with explicit polynomials of arbitrary degree. In
other words, our current method is restricted for polynomials for which 𝑦 = 𝑓 (𝑥). However, for simplicity and ease
of exposition, we will restrict ourselves to cubic polynomials for the remainder of the paper, so that, for the span,
𝑥 ∈ [𝑥𝑘𝑖 , 𝑥𝑘𝑖+1 ],

𝑦𝑢 (𝑥) = 𝑎𝑢𝑖𝑥3 + 𝑏𝑢𝑖𝑥2 + 𝑐𝑢𝑖𝑥 + 𝑑𝑢𝑖 and 𝑦𝑙 (𝑥) = 𝑎𝑙𝑖𝑥3 + 𝑏𝑙𝑖𝑥2 + 𝑐𝑙𝑖𝑥 + 𝑑𝑙𝑖 (3)

where, in order to ensure a closed shape, both surfaces must meet at the leading and trailing edges of the airfoil, separated
by the aerodynamic chord, which without loss of generality we assume to have length equal to unity, so that,

𝑦𝑢0 (0) = 𝑦𝑙0 (0) = 0 and 𝑦𝑢𝑛 (1) = 𝑦𝑙𝑛 (1) = 0. (4)

Furthermore, in order to enforce 𝐶2 continuity, we enforce the following constraints at each point in the knot vector,

𝑦𝑢𝑖 (𝑥𝑘𝑖+1 ) = 𝑦𝑢𝑖+1 (𝑥𝑘𝑖+1 ) and 𝑦𝑙𝑖 (𝑥𝑘𝑖+1 ) = 𝑦𝑙𝑖+1 (𝑥𝑘𝑖+1 ), (5)

and also,
𝑦′𝑢𝑖 (𝑥𝑘𝑖+1 ) = 𝑦′𝑢𝑖+1 (𝑥𝑘𝑖+1 ) and 𝑦′𝑙𝑖 (𝑥𝑘𝑖+1 ) = 𝑦′𝑙𝑖+1

(𝑥𝑘𝑖+1 ), (6)

and,
𝑦′′𝑢𝑖 (𝑥𝑘𝑖+1 ) = 𝑦′′𝑢𝑖+1 (𝑥𝑘𝑖+1 ) and 𝑦′′𝑙𝑖 (𝑥𝑘𝑖+1 ) = 𝑦′′𝑙𝑖+1

(𝑥𝑘𝑖+1 ). (7)

We now proceed to analyze the aerodynamic properties of cubic spline airfoils in subsonic and supersonic flows. In
each circumstance we will employ thin-airfoil theory, under which we assume the thickness and camber of the airfoil is
small compared to the chord. In addition, we also implicitly assume that the leading-edge radius of the airfoil is small.
In fact, as we focus on supersonic aerodynamic performance we allow for sharp leading edges.

A. Thin Airfoil Aerodynamics: Subsonic Cubic Spline Airfoils
Thin-airfoil theory provides closed form analytic solutions for the lift and moment coefficients of a reasonably thin

airfoil in a subsonic, invsicid, irrotational, incompressible flow. As presented in [12], the sectional lift and moment
coefficients are dependent solely upon the shape of the camber line,

𝑧𝑖 (𝑥) =
𝑦𝑢𝑖 (𝑥) + 𝑦𝑙𝑖 (𝑥)

2
=

(𝑎𝑢𝑖 + 𝑎𝑙𝑖 )𝑥3 + (𝑏𝑢𝑖 + 𝑏𝑙𝑖 )𝑥2 + (𝑐𝑢𝑖 + 𝑐𝑙𝑖 )𝑥 + (𝑑𝑢𝑖 + 𝑑𝑙𝑖 )
2

, (8)

for 𝑥 ∈ [𝑥𝑘𝑖 , 𝑥𝑘𝑖+1 ], and its slope

d𝑧𝑖
d𝑥

=
3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 )𝑥2 + 2(𝑏𝑢𝑖 + 𝑏𝑙𝑖 )𝑥 + (𝑐𝑢𝑖 + 𝑐𝑙𝑖 )

2
. (9)
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For simplicity of integration, we employ the conventional cosine transformation 𝑥 = 1
2 (1 − cos \), so that, once

simplified,
d𝑧𝑖
d𝑥

=
1
2

(
3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) cos4 \

2
+ (𝑏𝑢𝑖 + 𝑏𝑙𝑖 ) (1 + cos \) + 𝑐𝑢𝑖 + 𝑐𝑙𝑖

)
. (10)

The sectional lift coefficient is 𝑐𝑙 = 2𝜋(𝛼 − 𝛼𝑙0), where the angle of zero lift is given by

𝛼𝑙0 =
1
𝜋

∫ 𝜋

0

d𝑧
d𝑥

(1 − cos \) d\ =
1
𝜋

∑︁
𝑖

∫ \𝑖+1

\𝑖

d𝑧𝑖
d𝑥

(1 − cos \) d\, (11)

where \𝑖 = arccos (1 − 2𝑥𝑖). Similarly, the moment coefficient about the aerodynamic center is

𝑐mac = −1
2

∫ 𝜋

0

d𝑧
d𝑥

(cos \ − cos 2\) d\ = −1
2

∑︁
𝑖

∫ \𝑖+1

\𝑖

d𝑧𝑖
d𝑥

(cos \ − cos 2\) d\. (12)

Evaluating the above integrals, we obtain

32𝜋𝛼𝑙0 =

𝑛−1∑︁
𝑖=0

[
2(\𝑖+1 − \𝑖)

(
3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 4(𝑏𝑢𝑖 + 𝑏𝑙𝑖 ) + 8(𝑐𝑢𝑖 + 𝑐𝑙𝑖 )

)
+ (sin \𝑖+1 − sin \𝑖) (3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 16(𝑐𝑢𝑖 + 𝑐𝑙𝑖 ))
(sin(2\𝑖) − sin(2\𝑖+1)) (3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 4(𝑏𝑢𝑖 + 𝑏𝑙𝑖 ))
(sin(3\𝑖) − sin(3\𝑖+1)) (𝑎𝑢𝑖 + 𝑎𝑙𝑖 )

]
,

(13)

and

768𝑐mac =

𝑛−1∑︁
𝑖=0

[
12(\𝑖 − \𝑖+1 + sin \𝑖 − sin \𝑖+1) (9(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 8(𝑏𝑢𝑖 + 𝑏𝑙𝑖 ))

+ 12(sin(2\𝑖+1) − sin(2\𝑖)) (3(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 4(𝑏𝑢𝑖 + 𝑏𝑙𝑖 ) + 8(𝑐𝑢𝑖 + 𝑐𝑙𝑖 ))
+ 4(sin(3\𝑖+1) − sin(3\𝑖)) (9(𝑎𝑢𝑖 + 𝑎𝑙𝑖 ) + 8(𝑏𝑢𝑖 + 𝑏𝑙𝑖 ))
+ 9(sin(4\𝑖+1) − sin(4\𝑖)) (𝑎𝑢𝑖 + 𝑎𝑙𝑖 )

]
.

(14)

For the subsonic case, and under thin airfoil assumptions, 𝑐𝑙 , 𝑐mac, and 𝛼𝑙0 are affine, and therefore convex, functions of
the upper and lower surface spline coefficients and the angle of attack 𝛼.

B. Thin Airfoil Aerodynamics: Supersonic Cubic Spline Airfoils
As detailed in Kuethe and Chow[13], under suitable assumptions (including small thickness, camber, and angle of

attack and sharp leading edges), the lift and drag coefficients of an airfoil in a supersonic flow may be approximated as

𝑐𝑙 =
4𝛼

√
𝑀2 − 1

and 𝑐𝑑 =
4

√
𝑀2 − 1

(
𝛼2 + 𝐾2 + 𝐾3

)
. (15)

Here we will again assume a chord length of 1. The 𝐾2 term accounts for wave drag created by the camber line,

𝐾2 =

∫ 1

0

[
d
d𝑥

(
𝑦𝑢 (𝑥) + 𝑦𝑙 (𝑥)

2

)]2
d𝑥, (16)

and the 𝐾3 term accounts for wave drag generated by the airfoil thickness,

𝐾3 =

∫ 1

0

[
d
d𝑥

(
𝑦𝑢 (𝑥) − 𝑦𝑙 (𝑥)

2

)]2
d𝑥. (17)

Following a similar approach as the previous section, we find that, for the cubic spline case, the drag coefficient
may be represented as a sum of quadratic forms in the spline coefficients and the angle of attack. Specifically,

3



𝑐𝑑 = 4√
𝑀2−1

∑
𝑖 𝑣

𝑇
𝑖
𝑄𝑖𝑣𝑖 , where

𝑄𝑖 =
1
2



2/𝑛 0 0 0 0 0 0
0 9

5 (𝑥
5
𝑘𝑖+1

− 𝑥5
𝑘𝑖
) 3

2 (𝑥
4
𝑘𝑖+1

− 𝑥4
𝑘𝑖
) (𝑥3

𝑘𝑖+1
− 𝑥3

𝑘𝑖
) 0 0 0

0 3
2 (𝑥

4
𝑘𝑖+1

− 𝑥4
𝑘𝑖
) 4

3 (𝑥
3
𝑘𝑖+1

− 𝑥3
𝑘𝑖
) (𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
) 0 0 0

0 (𝑥3
𝑘𝑖+1

− 𝑥3
𝑘𝑖
) (𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
) (𝑥𝑘𝑖+1 − 𝑥𝑘𝑖 ) 0 0 0

0 0 0 0 9
5 (𝑥

5
𝑘𝑖+1

− 𝑥5
𝑘𝑖
) 3

2 (𝑥
4
𝑘𝑖+1

− 𝑥4
𝑘𝑖
) (𝑥3

𝑘𝑖+1
− 𝑥3

𝑘𝑖
)

0 0 0 0 3
2 (𝑥

4
𝑘𝑖+1

− 𝑥4
𝑘𝑖
) 4

3 (𝑥
3
𝑘𝑖+1

− 𝑥3
𝑘𝑖
) (𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
)

0 0 0 0 (𝑥3
𝑘𝑖+1

− 𝑥3
𝑘𝑖
) (𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
) (𝑥𝑘𝑖+1 − 𝑥𝑘𝑖 )


, (18)

and
𝑣𝑇𝑖 =

[
𝛼 𝑎𝑢𝑖 𝑏𝑢𝑖 𝑐𝑢𝑖 𝑑𝑢𝑖 𝑎𝑙𝑖 𝑏𝑙𝑖 𝑐𝑙𝑖 𝑑𝑙𝑖

]
. (19)

It is straightforward to check that all eigenvalues of 𝑄𝑖 are positive, and so 𝑄𝑖 is positive definite, and 𝑐𝑑 is a convex
function of 𝑣, as a summation of a set of convex quadratic forms.

Given that the lift coefficient is represented by a linear function in supersonic thin-airfoil theory, the drag-to-lift ratio
is the ratio of a quadratic to a linear function,

𝐷

𝐿
=

∑
𝑖 𝑣

𝑇
𝑖
𝑄𝑖𝑣𝑖

𝛼
. (20)

Per the above analysis, this is, in fact, the ratio of a positive definite quadratic over a linear function. Therefore, imposing
an upper bound on 𝐷/𝐿 (or equivalently, a lower bound on 𝐿/𝐷) over the set {𝛼 > 0} is convex-representable.

III. Geometric Constraints
A number of useful geometric constraints may be modeled as constraints that are convex in the spline parameters of

the airfoil. In some cases, these are individual constraints, whereas in others they are multiple constraints, sampled
uniformly over the chord of the airfoil. A number of these constraints are described below.

A. Single Constraints
As a linear function of the spline coefficients, constraints on both minimum and maximum area are convex.

Additionally, arc length may be approximated as a sum of 2-norms, a convex function, indicating that specifying a
maximum arc length is also a convex constraint. These are both examples of constraints which are integrated over the
complete airfoil section and are further detailed below.

1. Minimum or Maximum Area
The enclosed area of an airfoil represents the amount of payload that could be contained within, especially in the

case that payload is a liquid, such as fuel. The area is calculated as the integral of the thickness of the airfoil between the
leading and trailing edges,

𝐴 =

∫ 1

0
(𝑦𝑢 (𝑥) − 𝑦𝑙 (𝑥)) d𝑥

=
∑︁
𝑖

(𝑎𝑢𝑖 − 𝑎𝑙𝑖 ) (𝑥4
𝑘𝑖+1

− 𝑥4
𝑘𝑖
) + (𝑏𝑢𝑖 − 𝑏𝑙𝑖 ) (𝑥3

𝑘𝑖+1
− 𝑥3

𝑘𝑖
) + (𝑐𝑢𝑖 − 𝑐𝑙𝑖 ) (𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
) + (𝑑𝑢𝑖 − 𝑑𝑙𝑖 ) (𝑥𝑘𝑖+1 − 𝑥𝑘𝑖 ).

(21)

2. Maximum Arc Length
The arc length of a cubic spline does not have a readily available closed form solution, as

𝑙 =

∫ 1

0

√︄
1 +

(
d𝑦
d𝑥

)2
d𝑥 (22)
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results in an elliptic integral. However, it may be approximated to arbitrary precision as a summation of norms, resulting
in the convex constraints,∑︁

𝑖


[
𝑦𝑢 (𝑥𝑖+1) − 𝑦𝑢 (𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖

] ≤ 𝑙𝑢max and
∑︁
𝑖


[
𝑦𝑙 (𝑥𝑖+1) − 𝑦𝑙 (𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖

] ≤ 𝑙𝑙max . (23)

B. Sampled Constraints
The constraints described in this section reflect properties across a range of 𝑥 values. For example, if we are

interested in some property 𝑔(𝑥, 𝑣) that depends on the position 𝑥 along the chord and the airfoil parameters 𝑣 (e.g.,
the spline coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , and 𝑑𝑖), constraints that bound the maximum or minimum over some subset 𝑥 ∈ 𝑆 of
possible 𝑥 values would take the form

max
𝑥∈𝑆

𝑔(𝑥, 𝑣) ≤ 𝑔max or min
𝑥∈𝑆

𝑔(𝑥, 𝑣) ≥ 𝑔min. (24)

These constraints are convex in 𝑣 provided 𝑔 is a convex function of 𝑣 (for the 𝑔max constraint) or 𝑔 is a concave function
of 𝑣 (for the 𝑔min constraint). Indeed, (24) can be rewritten as

𝑔(𝑥, 𝑣) ≤ 𝑔max for all 𝑥 ∈ 𝑆, or 𝑔(𝑥, 𝑣) ≥ 𝑔min for all 𝑥 ∈ 𝑆. (25)

When 𝑔 is an affine function of 𝑣, both constraints are convex. However, these constraints can be difficult to incorporate
into a numerical solver because when 𝑆 contains infinitely many points, such as within an interval 𝑆 = [𝑥1, 𝑥2], the
constraints (25) correspond to infinitely many constraints (one for each 𝑥 ∈ 𝑆). This limitation can be overcome by
sampling. In other words, we pick a finite set of representative points {𝑥1, 𝑥2, . . . , 𝑥𝑚} ⊂ 𝑆 and instead impose the
constraints

𝑔(𝑥𝑘 , 𝑣) ≤ 𝑔max for 𝑘 = 1, . . . , 𝑚, or 𝑔(𝑥𝑘 , 𝑣) ≥ 𝑔min for 𝑘 = 1, . . . , 𝑚. (26)

Below we describe some examples of constraints that can be modeled in this fashion and their associated 𝑔 functions.

1. Thickness
Often it is desirable to place minimum or maximum limits on the thickness, 𝜏 = 𝑦𝑢 − 𝑦𝑙 , of an airfoil. These

constraints may be specified over the entire airfoil, or a region, 𝑥 ∈ [𝑥1, 𝑥2], and the corresponding 𝑔 function is

𝑔(𝑥) = 𝑦𝑢 (𝑥) − 𝑦𝑙 (𝑥). (27)

This function is affine in the airfoil parameters, so we can impose either upper or lower bound constraints. In order to
prevent unwanted intersections between the upper and lower surfaces, we generally include the constraint 𝑔(𝑥) ≥ 0 for
𝑥 ∈ [0, 1].

2. Gradient and Curvature Constraints
It may be desirable to place limitations on the derivatives of the shape, for instance in order to prevent large pressure

gradients that may lead to flow separation. This may be done for curvature using the 𝑔 function

𝑔(𝑥) = 6𝑎𝑢𝑖𝑥 + 2𝑏𝑢𝑖 , (28)

or for the gradient (first derivative, more relevant in supersonic flow) using the 𝑔 function

𝑔(𝑥) = 3𝑎𝑢𝑖𝑥
2 + 2𝑏𝑢𝑖𝑥 + 𝑐𝑢𝑖 . (29)

These functions are affine in the airfoil spline coefficients, so it is possible to impose upper or lower bound constraints
on either one.
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3. Internal Payloads
Beyond the constraints discussed above, it may be important to fit various shapes into the internal cavity of the

airfoil. For instance, a circle of radius, 𝑟, centered at [𝑥𝑐, 𝑦𝑐], can be prescribed by including the following sampled
constraints, which correspond to the upper and lower surfaces, respectively:

𝑔(\) =
{
𝑎𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑢𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑢𝑖 − 𝑦𝑐 − 𝑟 sin \) ≥ 0 for all \ ∈ [0, 𝜋]
𝑎𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑙𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑙𝑖 − 𝑦𝑐 − 𝑟 sin \) ≤ 0 for all \ ∈ [𝜋, 2𝜋] .

(30)
An internal square constraint may be defined as a minimum thickness constraint over a window centered at 𝑥𝑐 and 𝑦𝑐.
For constant 𝑥𝑐, 𝑦𝑐, and 𝑟 these each describe affine constraints. In fact, since 𝑦𝑐 appears as a linear term it is also
possible to include it as a convex variable. This is not true for 𝑥𝑐, the inclusion of which would result in several bilinear
terms.

IV. Application to Airfoil Design
In the previous sections, we provided an overview of several indicators of performance and a number of constraints

that may be modeled as convex functions of the parameters of a given thin, cubic spline airfoil. To summarize the
previous sections, Table 2 highlights a subset of objective functions and constraints that can be easily included in convex
optimization problems for airfoil design based on thin-airfoil theory. The power of this approach lies in the ability to
pick arbitrarily from this menu since any convex combination of convex functions is also convex.

Aerodynamic Performance Geometric Constraints

Subsonic lift coefficient Minimum/Maximum thickness
Subsonic moment coefficient Minimum/Maximum area
Supersonic drag coefficient Minimum/Maximum gradient
Supersonic lift to drag ratio Minimum/Maximum curvature
Supersonic moment coefficient Internal payload constraints

Non-Intersection constraint
Maximum arc length constraint

Table 2 Design of thin, cubic spline airfoils: convex objectives and constraints

In the remaining sections of this paper, we demonstrate applications of this approach using several examples of
increasing complexity. First we demonstrate the approach via a simple area maximization problem. Next, we consider
minimization of drag of a zero lift airfoil in a supersonic flow, a problem with a convex quadratic objective function
and convex constraints. Then we explore the convergence of this method based on two key parameters, the number of
spline segments used to define the airfoil shape and a regularization parameter used to control maximum curvature.
Finally, similarly to the polynomial case in our previous work, we demonstrate the extension of this method to a single
nonconvex variable using a golden search algorithm.

A. Solving Convex Optimization Problems
Several readily available packages, including CVXPY [14, 15] and YALMIP [16], are modeling languages that

efficiently and automatically transform a convex optimization problem into a standard form, call an external solver,
and post-process the results. For example, CVXPY uses graph implementations of convex functions to transform the
initial problem into a conic form, which is a generalization of a linear program. These conic problems are then readily
solvable using a combination of commercial or open-source solvers.

As an example, consider the problem of maximizing the area between an upper surface and the x axis, with the
maximum thickness constraints 𝑦𝑢 (𝑥) ≤ 0.5 whenever 0 ≤ 𝑥 ≤ 0.4 and 𝑦𝑢 (𝑥) ≤ 1.0 whenever 0.4 ≤ 𝑥 ≤ 1.0. This
problem may be expressed as the optimization problem,
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area =
∑︁
𝑖

𝑎𝑢𝑖

4
(𝑥4

𝑘𝑖+1
− 𝑥4

𝑘𝑖
) +

𝑏𝑢𝑖

3
(𝑥3

𝑘𝑖+1
− 𝑥3

𝑘𝑖
) +

𝑐𝑢𝑖

2
(𝑥2

𝑘𝑖+1
− 𝑥2

𝑘𝑖
) + 𝑑𝑢𝑖 (𝑥𝑘𝑖+1 − 𝑥𝑘𝑖 ) (31)

minimize
{𝑎𝑢𝑖 ,𝑏𝑢𝑖 ,𝑐𝑢𝑖 ,𝑑𝑢𝑖 }

1
area

+ 𝜖 ∥𝑎𝑢∥2 (function describing the area)

subject to max
𝑥∈[0,0.4]

𝑎𝑢𝑖𝑥
3 + 𝑏𝑢𝑖𝑥2 + 𝑐𝑢𝑖𝑥 + 𝑑𝑢𝑖 ≤ 0.5 (thickness constraint)

max
𝑥∈[0.4,1.0]

𝑎𝑢𝑖𝑥
3 + 𝑏𝑢𝑖𝑥2 + 𝑐𝑢𝑖𝑥 + 𝑑𝑢𝑖 ≤ 1.0 (thickness constraint)

min
𝑥∈[0,1]

𝑎𝑢𝑖𝑥
3 + 𝑏𝑢𝑖𝑥2 + 𝑐𝑢𝑖𝑥 + 𝑑𝑢𝑖 ≥ 0 (non-intersection constraint)

(32)

Here, we include a small amount of regularization on the total curvature, which minimizes the effects of numerical
rounding errors that are introduced in the purely linear approach. The solution, employing uniformly sampled maximum
thickness and non-intersection constraints, is shown in Figure 1. For a uniformly sampled knot vector with 𝑛 = 5 and
𝜖 = 1𝑒 − 4, the maximum area is areamax = 1.649.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Fig. 1 Maximum area cubic spline subject to partial thickness constraints (dashed lines denote constraints, red
dots denote knot locations).

B. Minimum Drag Supersonic Airfoil Comparison: Cubic Polynomials vs Cubic Splines
Moving on to a more pertinent example, let us consider the case of drag minimization of a supersonic, non-lifting

airfoil. Formally, we seek to minimize drag, subject to a non-intersection constraint and the constraint that the airfoil
enclose a circular payload, centered at the location 𝑥𝑐, which is a given constant. We also impose a minimum subsonic
lift at zero angle of attack and a maximum subsonic moment about the mean aerodynamic center. The vector of design
variables for the quadratic form of drag with this problem is 𝑣𝑇

𝑖
=

[
𝛼 𝑎𝑢𝑖 𝑏𝑢𝑖 𝑐𝑢𝑖 𝑑𝑢𝑖 𝑎𝑙𝑖 𝑏𝑙𝑖 𝑐𝑙𝑖 𝑑𝑙𝑖

]
, and
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the problem may be formally stated as,

minimize
𝑣,𝑦𝑐

4
√
𝑀2 − 1

∑︁
𝑖

𝑣𝑇𝑖 𝑄𝑖𝑣𝑖

subject to 𝛼𝑙0 ≤ 𝛼𝑙0min

𝑐mac ≤ 𝑐macmax

𝛼 = 0
min

𝑥∈[0,1]
(𝑦𝑢 (𝑥) − 𝑦𝑙 (𝑥)) ≥ 0

max
𝑥∈[0,1]

|𝑦′′𝑢 (𝑥) − 𝑦′′𝑙 (𝑥) | ≤ ^max

min
\∈[0, 𝜋 ]

(
𝑎𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑢𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑢𝑖 − 𝑦𝑐 − 𝑟 sin \

)
≥ 0

max
\∈[𝜋,2𝜋 ]

(
𝑎𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑙𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑙𝑖 − 𝑦𝑐 − 𝑟 sin \

)
≤ 0.

(33)

In this example, we specify 𝑀 = 2, 𝛼𝑙0min = −0.15, 𝑐macmax = −0.2, ^max = 5, 𝑥𝑐 = 0.35 and 𝑟 = 0.05, with a constraint
sampling interval Δ𝑥 = 0.001. The ability to limit or penalize maximum curvature, or variation of curvature, becomes
important in the case of a spline surface, as numerical solutions without any such limitations often result in physically
undesirable, or wavy, surfaces. We will explore this further in the next section.

0.0 0.5 1.0
a) Optimal thin airfoil derived using cubic spline surfaces
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Fig. 2 Minimum supersonic drag cubic airfoil subject to various constraints, cubic spline.

We ran this problem using both a cubic spline representation of the airfoil, with 𝑛 = 40, and a cubic polynomial
representation. The results of the cubic spline solution are shown in Fig. 2 and the results of the cubic polynomial
solution are shown in Fig. 3. A superimposed comparison of the resulting airfoils is shown in Fig. 4. The spline case
demonstrated a 28.75% reduction in drag (𝑐𝑑 = 0.058 vs 𝑐𝑑 = 0.082).

The physical airfoil generated in the spline case is intuitively similar to the classic test case of the diamond airfoil as
the minimum drag airfoil in an unconstrained supersonic thin airfoil problem. However, in this case the center point of
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Fig. 3 Minimum supersonic drag cubic airfoil subject to various constraints, cubic polynomial.
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Fig. 4 Minimum supersonic drag cubic airfoil subject to various constraints, cubic polynomial compared to
cubic spline.

9



the diamond has been shifted to accommodate the prescribed internal payload and the trailing edge has been sculpted to
meet the subsonic maximum angle of zero lift and maximum moment coefficient constraints.

C. Sensitivity Analysis
The solution of the previous section raises several issues related to the use of these, more flexible, splines. First, each

new segment introduces six additional constraints as well as two additional quadratic forms into the objective function.
In the interest of computational efficiency it would be helpful to understand how many knots are appropriate in order
to reap increased airfoil performance using this additional flexibility without introducing unnecessary computational
complexity into the problem. Second, the traditional diamond airfoil does not account for other important effects in the
significant portion of flight time that any aircraft will spend in the subsonic flight regime. For the previous problems,
the maximum absolute curvature in the spline case is nearly twice that of the polynomial case. These zones of high
curvature are potential areas of boundary layer separation and ensuing poor aerodynamic performance. Therefore, it
would be helpful to understand the relative tradeoff between drag improvement and variation in curvature. In this section
we will explore both of these important dynamics.

1. Regularization Parameter
The design of physical surfaces generally favors so-called fair surfacing[17], whereby the surface will not demonstrate

significant waves, or stated more simply, curvature should vary relatively smoothly.
In order to minimize this variation of curvature, we add a small of regularization to the sum of the third derivative

(or the derivative of curvature) to the objective function. By varying the regularization constant for this term, we can
generate a family of optimal airfoil shapes that will provide an understanding of the tradeoff between allowable curvature
variation and potential drag reduction over the polynomial case.

minimize
𝑣,𝑦𝑐

4
_
√
𝑀2 − 1

∑︁
𝑖

𝑣𝑇𝑖 𝑄𝑖𝑣𝑖 +
_

2𝑛

∑︁
𝑖

(
𝑎2
𝑢𝑖
+ 𝑎2

𝑙𝑖

)
(34)

For the example shown above, the value of this additional term, without multiplier, _, is approximately 80, whereas,
𝑐𝑑 = 0.058, approximately a three order of magnitude difference. Fig. 5 shows the tradeoff of varying the _ parameter,
both in the resulting drag coefficient as well as the maximum forebody curvature (𝑥 ≤ 0.75𝑐) vs drag coefficient.
Similarly, Fig. 6 shows the physical effect on airfoil shape of varying this parameter. Larger values provide a smoother
surface, while smaller values allow for sharper edges with higher curvature.
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dx2 |
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Fig. 5 Drag coefficient as function of _, 𝑛 = 40.
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Fig. 6 Optimal drag airfoils for varying _, 𝑛 = 40.

2. Length of Knot Vector
The number of knots, or polynomial segments, is also a critical input to the optimization problem in the case of

cubic splines. Too few segments will not give the optimizer the flexibility to find a truly optimal solution, too many will
result in unnecessary computational expense. In this section we will attempt to understand the appropriate number of
knots to include in this class of problem. Below, we shown two cases of calculated optimal drag, the first in Fig. 7 with
_ = 0.25, and the second, in Fig. 8, with a regularization term of _ = 0.001. As seen in each, for this problem, the error
converges in the vicinity of 40 knots, which seems an appropriate general guideline.
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a) Calculated drag coefficient
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Fig. 7 Error in drag coefficient with increasing knots, _ = 0.25.

D. Minimum Drag Supersonic Airfoil with Variable Internal Payload
Here we refine our previous results by choosing the number of spline knots and the regularization parameter using

the result of the previous section. Additionally, we employ bisection to solve a nonconvex extension, with an internal

11



0 10 20 30 40
n

a) Calculated drag coefficient

0.060

0.065

0.070

0.075

0.080
c d

0 10 20 30 40
n

b) Drag coefficient error

10 5

10 4

10 3

10 2

|c
d

c d
ac

t|

Fig. 8 Error in drag coefficient with increasing knots, _ = 0.001.

payload where the location, 𝑥𝑐 is now variable, but the spline coefficient design vector, 𝑣 is the same as before,

minimize
𝑣,𝑦𝑐 ,𝑥𝑐

4
_
√
𝑀2 − 1

∑︁
𝑖

𝑣𝑇𝑖 𝑄𝑖𝑣𝑖 +
_

2𝑛

∑︁
𝑖

(
𝑎2
𝑢𝑖
+ 𝑎2

𝑙𝑖

)
subject to 𝛼𝑙0 ≤ 𝛼𝑙0min

𝑐mac ≤ 𝑐macmax

𝛼 = 0
min

𝑥∈[0,1]
(𝑦𝑢 (𝑥) − 𝑦𝑙 (𝑥)) ≥ 0

max
𝑥∈[0,1]

|𝑦′′𝑢 (𝑥) − 𝑦′′𝑙 (𝑥) | ≤ ^max

min
\∈[0, 𝜋 ]

(
𝑎𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑢𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑢𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑢𝑖 − 𝑦𝑐 − 𝑟 sin \

)
≥ 0

max
\∈[𝜋,2𝜋 ]

(
𝑎𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)3 + 𝑏𝑙𝑖 (𝑥𝑐 + 𝑟 cos \)2 + 𝑐𝑙𝑖 (𝑥𝑐 + 𝑟 cos \) + 𝑑𝑙𝑖 − 𝑦𝑐 − 𝑟 sin \

)
≤ 0.

(35)

We solve this problem using a golden-section search, which includes two solutions of the inner convex problem, with 𝑥𝑐
fixed, per iteration. Fig. 9 shows the interval width (|𝑏 − 𝑎 |) at each interval and convergence history.

For values of 𝑀 = 2, 𝑛 = 40, _ = 0.25, 𝑟 = 0.05, 𝛼𝑙0min = −0.15, 𝑐macmax = −0.2, and ^max = 5, we obtain the
following results. The optimal drag coefficient, 𝑐𝑑 = 0.064. The optimal placement of the internal payload is 𝑥𝑐 = 0.485
and 𝑦𝑐 = 0.037. The angle of attack for zero lift, 𝛼𝑙0 = −0.150 and the moment coefficient about he aerodynamic
center, 𝑐mac = −0.264. Fig. 10 shows the resulting airfoil shape, curvature, and thickness profile. Again demonstrating
an airfoil cross section influenced by the optimal diamond shape, for minimal supersonic drag in a small disturbance
field, with higher camber near the trailing edge to meet the subsonic lift and moment constraints and a modest amount
of curvature across the airfoil to prevent subsonic flow separation. Furthermore, the use of cubic splines decreases
the optimal drag by approximately 20.15% as compared with the polynomial case (𝑐𝑑 = 0.080), with the comparitive
shapes shown in Fig. 11.

V. Conclusion
In this paper, we have extended an approach to conceptual airfoil design, in circumstances where the assumptions

of thin-airfoil theory hold, that provides a global optimum in polynomial time using convex optimization techniques.
These techniques provide the designer with a ready menu of options for objective function and constraints that allow
for the application of a variety of aerodynamic and geometric constraints. We have provided derivations for relevant
objective functions and constraints for shapes represented by cubic splines and have shown an approximately 20%
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Fig. 9 Residual history of nonconvex, golden-section search.

0.0 0.5 1.0
a) Optimal thin airfoil derived using cubic spline surfaces

0.0

0.1

y

0.00 0.25 0.50 0.75 1.00
b) Curvature profile of optimal 

cubic polynomial airfoil

6

3

0

3

6

d2 y
/d

x2

Upper surface

Lower surface

0.00 0.25 0.50 0.75 1.00
c) Thickness profile of optimal 

cubic polynomial airfoil

0.00

0.02

0.04

0.06

0.08

0.10

y u
pp

er
y l

ow
er

Fig. 10 Optimal results derived from golden-section search, _ = 0.25.
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Fig. 11 Comparison of resulting cubic polynomial and cubic spline airfoils.

decrease in drag coefficient by providing the optimizer with this increased flexibility. Finally, we have shown the impact
of several important problem parameters in the quality of the final solution, and applied these concepts to a nonconvex
extension of the initial supersonic drag minimization problem.

References
[1] Berkenstock, D., Alonso, J., and Lessard, L., “A Convex Optimization Approach to Thin Airfoil Design,” AIAA Aviation Forum,

2022.

[2] Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

[3] Song, W., and Keane, A., “A Study of Shape Parameterisation Methods for Airfoil Optimisation,” 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2012.

[4] Masters, D. A., Taylor, N. J., Rendall, T., Allen, C. B., and Poole, D. J., “Review of Aerofoil Parameterisation Methods for
Aerodynamic Shape Optimisation,” 53rd AIAA Aerospace Sciences Meeting, 2015.

[5] Sripawadkul, V., Padulo, M., and Guenov, M., “A Comparison of Airfoil Shape Parameterization Techniques for Early Design
Optimization,” 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2012.

[6] Kulfan, B., and Bussoletti, J., “"Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes,” 11th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006.

[7] Kulfan, B. M., “Universal Parametric Geometry Representation Method,” Journal of Aircraft, Vol. 45, 2008, pp. 142–158.

[8] Kulfan, B., “A Universal Parametric Geometry Representation Method - "CST",” 45th AIAA Aerospace Sciences Meeting and
Exhibit, 2007.

[9] Rajnarayan, D., Ning, A., and Mehr, J. A., “Universal Airfoil Parametrization Using B-Splines,” 2018 Applied Aerodynamics
Conference, 2018.

[10] Li, W., and Krist, S., “Spline-Based Airfoil Curvature Smoothing and Its Applications,” 2005, pp. 1065–1074.

[11] Beach, R., An Introduction to the Curves and Surfaces of Computer-aided Design, Van Nostrand Reinhold, 1991.

[12] Moran, J., An Introduction to Theoretical and Computational Aerodynamics, Dover Books on Aeronautical Engineering, Dover
Publications, 2013.

[13] Kuethe, A. M., and Chow, C., Foundations of aerodynamics: Bases of aerodynamic design, 3rd ed., Wiley New York, 1976.

[14] Diamond, S., and Boyd, S., “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine
Learning Research, Vol. 17, No. 83, 2016, pp. 1–5.

[15] Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S., “A rewriting system for convex optimization problems,” Journal of
Control and Decision, Vol. 5, No. 1, 2018, pp. 42–60.

14



[16] Löfberg, J., “YALMIP: A toolbox for modeling and optimization in MATLAB,” IEEE International Conference on Robotics
and Automation, 2004, pp. 284–289.

[17] Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B., Polygon Mesh Processing, CRC Press, 2010.

15


	Introduction
	Application of Thin-Airfoil Theory to Cubic Spline Airfoils
	Thin Airfoil Aerodynamics: Subsonic Cubic Spline Airfoils
	Thin Airfoil Aerodynamics: Supersonic Cubic Spline Airfoils

	Geometric Constraints
	Single Constraints
	Minimum or Maximum Area
	Maximum Arc Length

	Sampled Constraints
	Thickness
	Gradient and Curvature Constraints
	Internal Payloads


	Application to Airfoil Design
	Solving Convex Optimization Problems
	Minimum Drag Supersonic Airfoil Comparison: Cubic Polynomials vs Cubic Splines
	Sensitivity Analysis
	Regularization Parameter
	Length of Knot Vector

	Minimum Drag Supersonic Airfoil with Variable Internal Payload

	Conclusion

