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Abstract—In this paper, we propose an approach to the concep-
tual design of high speed aerospace vehicles that addresses the
coupled behavior of hypersonic aerodynamics and radar cross
section. Our approach employs convex optimization, a branch
of optimization theory that guarantees global optima for prob-
lems expressed with convex objective functions and constraints,
combined with cubic splines as cross sectional representations.
We demonstrate the process of creating convex surrogates using
piecewise linear functions and apply these objective functions to
useful test cases, employing a mixture of convex constraints on
geometry. We also provide comparisons on the ability to con-
verge to global optima between this type of convex optimization
problem to a nonconvex, sequential quadratic programming
solver.
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1. INTRODUCTION
The field of Aerospace Shape Optimization (ASO) has gar-
nered significant attention over the last 30 years, coupling
computational modeling of physical performance with op-
timization routines that iterate a shape towards improved
capabilities.

The simulation of aerodynamic performance has often been
achieved through implementation of nonlinear, nonconvex
partial differential equations, which themselves must be
solved using iterative techniques. The computational cost
associated with such methods can limit the practicality of
broad searches over high dimensional design spaces. Instead,
their benefits are often best seen through the refinement of
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an existing design to a new, local optimum. This leads to a
potential dilemma during the conceptual design stage. Often,
in order to achieve performance near the global optimum of a
given problem, a relatively similarly performing shape must
be known a priori.

Convex optimization [4] has been used in a variety of engi-
neering disciplines, from financial analysis to truss design to
development of control algorithms. Convex optimization is
frequently encountered in trajectory optimization and control
system design of both hypersonic re-entry and air breathing
vehicles [5]. However, although convex optimization has
been employed in vehicle configuration design [7], its use in
the physical design of aerodynamic vehicles has been limited.

The computational design of hypersonic vehicles has become
of increasing interest in recent years, due to improved com-
putational capabilities, development of several commercial
hypersonic transport vehicles, and the requirement for high
speed weapons.

In [1], Eyi et al discuss a general framework for combining
aerodynamic and thermal design in a high-fidelity, multidis-
ciplinary environment. Similarly, in [2, 3], Kinney demon-
strates the approach of three dimensional shape design using
Newtonian flow theory, combined with direct manipulation of
surface triangulation.

The remainder of this paper is organized as follows. First, we
provide a brief overview of the field of convex optimization.
We then proceed to outline an approach which combines
linear coefficient shape descriptors with convex, trust region,
objective function surrogates to generate an optimum in close
proximity to the true global optimum. Next, we derive aero-
dynamic indicators for hypersonic aerodynamics and radar
cross section and generate convex surrogates for each. Fi-
nally, we demonstrate the proposed method on several vehicle
designs, showing the Pareto front of performance tradeoff
between hypersonic drag and radar cross section.

2. CONVEXITY ASSISTED SHAPE
OPTIMIZATION

In Aerospace Shape Optimization (ASO), the objective is to
optimize one, or multiple, measures characterizing perfor-
mance of a physical vehicle, subject to a set of constraints on
the vehicle’s geometry and performance. Formally, we seek
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to solve problems of the type

minimize
z∈D

f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m,
(1)

where z ∈ D is a vector of design variables describing
the shape of the vehicle and D ⊆ Rn is the admissible
set of variables. In a typical ASO problem, the functions,
fi, may be quite general. For example, they often arise
from the discretization of highly non-linear partial differential
equations. In general, the objective and constraint functions
may be nonlinear, nonconvex, and solved themselves by
computationally expensive iterative methods. Additionally,
the methods for describing the shape under consideration are
varied. Shapes may be defined discretely, by vertices and
connectivity, or continuously by polynomials and/or splines
that may be explicit or implicit. The solution of problems
such as shown in Eq. (1) may be approached locally or glob-
ally. Global methods typically involve searching algorithms
such as genetic algorithms, particle swarms, or simulated an-
nealing. These methods offer the attractive promise of global
optimality, however, they come at a computational cost that
can be prohibitive for all but the simplest of problems. Local
methods typically iterate an initial solution towards a locally
optimal solution by incorporating gradients and, potentially,
Hessians. Using adjoint formulations and automatic differen-
tiation techniques, it is computationally tractable to attempt
local, gradient-based optimization even with complex vehicle
representations and high-fidelity physical models. However,
gradient-based optimization of even relatively simple prob-
lems can prove exceedingly frustrating for the designer, due
to the dependency of the final solution on the quality of
the initial guess. In practice, the solution must be repeated
many times, starting from differing initial points across the
design space, and tuning various parameters of the optimizer.
Especially for design spaces of high dimension, it may not be
clear to the designer whether anything approaching a global
optimum has been achieved.

Conversely, in a convex optimization problem, we add the
stipulation that the fi : D → R are strictly convex, which
means that for all 0 ≤ θ ≤ 1 and y, z ∈ D with y ̸= z,

θy + (1− θ)z ∈ D (D is a convex set), and
f(θy + (1− θ)z) < θf(y) + (1− θ)f(z).

The primary benefit of strictly convex optimization models
are 1) they have a global optimum that can be found in
polynomial time, 2) no special initialization is typically re-
quired, and 3) there exists a rich set of off-the-shelf solvers
that require limited expertise for implementation [12, 13].
The primary drawback is the fact that very few governing
equations of the underlying physics of useful problems are
strictly convex.

The fundamental distinction of this approach is an analysis
of the convexity of the underlying objective and constraint
functions, which provide a high degree of certainty regarding
the quality that should be expected in a final answer. In-
deed, there are additional categories of problems that also
analyze the nature of the underlying objective and constraint
equations and provide some, though less than the strictly
convex case, certifications towards global optimality. These
include quasiconvex and polynomial optimation. There are
also heuristic methods, developed based on principles from
convex optimization, which in practice provide solutions to
nearly convex problems that are often near the underlying
global optimum.

In this work, we propose a combination of these principles we
call Convexity Assisted Shape Optimization (CASO). There
are fundamentally two observations that underly CASO.
First, a rich variety of shapes may be represented by ex-
plicit polynomial splines with linear coefficients. These lend
themselves easily to specification of geometric constraints,
including thickness, area, slope, curvature, etc. The second
observation is there exist approaches to modelling physical
phenomena, of low to medium fidelity, that are either 1)
convex, 2) nearly convex, or 3) convex over a trust region
within which other information indicates the global solution
should lie.

The simplest implementation of CASO is as follows. First,
define a physical shape using explicit polynomial splines,
with the linear coefficients as design variables. Second,
identify the convex trust regions of any relevant physical
phenomena. Third, develop convex surrogates for each
physical phenomena by taking the maximum of a set of
sampled piecewise linear functions. Fourth, combine the
menu of constraints and objective functions above to develop
and solve convex optimization problems resulting in globally
optimal shapes.

While beyond the scope of the current paper, in future re-
search we plan to also describe options to extend this method
to the case where the objective function components are
nearly, but not strictly, convex or where a transformation may
introduce a convex objective function, with the additional of
potentially nonconvex constraints.

The specific design problem we consider in the present work
is a Multidisciplinary Design Optimization problem whereby
we simultaneously seek to minimize the drag and radar cross
section of an aerodynamic vehicle subjected to a hypersonic
(M > 5) flow.

In our case study, we found that using CASO quickly pro-
vided useful results, which were only matched by painstak-
ingly tuning generic, gradient based approaches through the
execution of hundreds of equivalent problems.

3. AERODYNAMIC PERFORMANCE
In the conceptual design of hypersonic vehicles, it is typical to
employ the so-called Newton sine-squared law for estimating
the surface pressure coefficient [9]. Under this model, the
pressure coefficient is assumed proportional to the squared
inner product of the free stream velocity and the local surface
normal, so for the portion of the surface impinged by the flow,

cp = 2(v̂ · n̂)2. (2)

Note that cp = 0 in regions where the flow is blocked by
another portion of the body. The normal and axial force
imparted to the body may then be integrated such that

cn =

∫ c

0

(cpl
− cpu

) dx

ca =

∫ c

0

(
cpl

dyl
dx

− cpu

dyu
dx

)
dx,

(3)

and the lift and drag sectional coefficients are obtained as

cl = cn cosα− ca sinα

cd = cn sinα+ ca cosα.
(4)
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Due to the difficulty of obtaining analytic integrals for com-
plex shapes, it is customary to discretize the body into a series
of simpler constituent panels, often linear segments. We shall
assume sampling at fixed intervals along the x axis, with
integration beginning at the trailing edge and proceeding in a
clockwise fashion. Furthermore, for illustrative purposes we
will assume zero angle of attack, so that the lift and normal
force vectors are aligned as well as the drag and axial force
vectors. In this case,

cl = cn = 2

n/2∑
i=0

∆y2i∆x

∆y2i +∆x2
−

n−1∑
n/2+1

∆y2i∆x

∆y2i +∆x2


cd = ca = 2

n/2∑
i=0

∆y3i
∆y2i +∆x2

+

n−1∑
n/2+1

∆y3i
∆y2i +∆x2

 ,

(5)
where ∆yi = yi+1 − yi and ∆x is a constant. Note that
for zero angle of attack and for a convex body, the impinged
section of the surface will have ∆yi ≥ 0, while ∆x ≤ 0 and
∆x ≥ 0 for the lower and upper surfaces, respectively.

Figure 1. Drag coefficient as function of ∆yi.

4. ELECTROMAGNETIC PERFORMANCE
The Stratton-Chu integrals are solutions to Maxwell’s equa-
tions, which express the radiated energy at a point in space
[10, 11]. In this case, they will describe the electrical wave
induced by a set of currents present on a body, which them-
selves have been induced by a radar wave. As presented by
Jenn [10], the radar cross section is given as,

σ = lim
r→∞

4πr2
|E⃗(r, θ, ϕ)|2

|E⃗i|2
, (6)

where, the electric field observed at a point is given as,

E⃗(r, θ, ϕ) =
−jkη

4πr

∫∫∫
V

J⃗ejkg dv′, (7)

The physical optics approximation for the body currents, J⃗ ,
are applicable for electrically large bodies. On the illumi-

nated portion of the body,

J⃗ = 2n̂× H⃗i, (8)

and J⃗ = 0 elsewhere. Consider an incident wave, where, for
the two dimensional case,

E⃗i = E0θe
−jk⃗i·r⃗ θ̂ (9)

As in the case of hypersonic aerodynamics, we discretize a
body into a set of linear segments. Completing the integration
above, for a single panel, results in,

E(r, θ) =
−je−jkrE0θ

2πr
hi sinc(k(∆x cos θ +∆yi sin θ)),

(10)
where, hi = (−∆x sin θ + ∆yi cos θ). Evaluating the limit,
the resulting radar cross section for an individual panel, is
given as,

σi =
4π

λ2
h2
i sinc(k(∆x cos θ +∆yi sin θ))

2. (11)

For conceptual design purposes, we proceed to use the geo-
metrical components method, adding the contributions from
each component noncoherently, such that,

σ =
∑
i

σi. (12)

Figure 2. RCS as function of ∆yi, (θ = 5◦,λ = 0.05m).

5. CASO IMPLEMENTATION
We will now demonstrate an implementation of CASO using
the method outlined above. First, we define the vehicle
cross section using cubic splines for both the top and bottom
surfaces. Second, we analyze the functions for drag and radar
cross section and develop convex surrogates for each. Finally,
we will combine the objective function with a menu of ge-
ometric constraints to develop solvable convex optimization
problems.
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Figure 3. RCS as function of ∆yi, (θ = 5◦,λ = 0.05m).

Shape Representation and Geometric Constraints

For simplicity, we derive relevant equations for the two-
dimensional case (designing a vehicle cross-section), but it
is straightforward to generalize our methods to three dimen-
sions. A variety of parameterizations may be used to describe
the shape of the vehicle, such as arbitrary combinations of
piecewise basis functions. However, for this approach it is
important that explicit shape definitions are used, i.e. the
vehicle is described as y(x), not [x(t) y(t)]. Again for
simplicity of exposition, we will use cubic splines to pa-
rameterize the upper and lower surfaces of the cross-section.
In this section, we will derive the necessary mathematics
for cubic spline parameterizations and provide a menu of
applicable geometric constraints for use in design problems.

Cubic Spline Representation—A cubic spline is a continuous
piecewise function where each piece is a cubic polynomial.
The points where successive polynomials are stitched to-
gether are called knots. At each knot, the adjacent cubics are
constrained to have matching position, slope and curvature
(first and second derivative).

The ith polynomial, for xknoti ≤ x ≤ xknoti+1 has the form

yi(x) = aix
3 + bix

2 + cix+ di,

and, at each knot, x = xknoti , the matching conditions are

aix
3 + bix

2 + cix+ di = ai+1x
3 + bi+1x

2 + ci+1x+ di+1

3aix
2 + 2bix+ ci = 3ai+1x

2 + 2bi+1x+ ci+1

6aix+ 2bi = 6ai+1x+ 2bi+1.

In representing a vehicle cross section, we employ separate
splines, yu(x) and yl(x) with 0 ≤ x ≤ 1 for the upper
and lower surfaces, where we adopt the following notation
for each polynomial:

yui
(x) = aui

x3 + bui
x2 + cui

x+ dui
,

yli(x) = alix
3 + blix

2 + clix+ dli .

Here, we elect to use two segments for the top and bot-
tom splines, with fixed knots located at xknot, resulting in

a sixteen-dimensional design space. We further constrain
the upper and lower splines to meet on the x-axis at the
leading and trailing edges of the cross-section, giving the four
constraints

du0
= dl0 = 0

au1 + bu1 + cu1 + du1 = 0

al1 + bl1 + cl1 + dl1 = 0.

(13)

Between the six equations enforcing continuity of position,
slope, and curvature at the knot on both splines, and the four
equations that fix the leading and trailing edges, six degrees
of freedom remain. An illustrative sample of 180 possible
shapes generated from this design space are shown in Fig. 4.

Geometric Constraints—As we describe in [8], this explicit,
polynomial-based representation lends itself to a number
of convex, geometric constraints, including those listed in
Table 1.

Table 1. Convex geometric constraints.

Geometric Constraints

Minimum/Maximum thickness
Minimum/Maximum area
Minimum/Maximum slope
Minimum/Maximum curvature
Internal payload constraints
Non-Intersection constraint
Maximum arc length constraint

For example, it is possible to express a maximum thickness,
τmax constraint by enforcing a maximum distance between
the two surfaces over the range, 0 ≤ x ≤ 1, such that,

max (τ(x)) ≤ τmax, (14)

where,
τ(x) = (aui

− ali)x
3+(bui

− bli)x
2

+(cui
− cli)x+dui

− dli .
(15)

As the maximum of an affine set, this represents a convex
constraint. Conversely, the minimum thickness over a pre-
scribed region, x1 ≤ x ≤ x2, may be enforced as,

min (τ(x)) ≥ τmin. (16)

A non-intersection constraint may be created by using this
constraint with x1 = 0, x2 = 1, and τmin = 0.

Minimum and maximum constraints on slope and curvature
may be treated similarly. For the cubic spline described
above, the area contained within the vehicle cross section is
given by,

A =

∫ xknot

0

(yu0
− yl0) dx+

∫ 1

xknot

(yu1
− yl1) dx, (17)

or

A =(au1
− al1)

(
1

4
− x4

knot

4

)
+ (bu1

− bl1)

(
1

3
− x3

knot

3

)
+(cu1

− cl1)

(
1

2
− x2

knot

2

)
+ (du1

− dl1) (1− xknot)

+
1

4
(au0

− al0)x
4
knot +

1

3
(bu0

− bl0)x
3
knot

+
1

2
(cu0

− cl0)x
2
knot + (du0

− dl0)xknot

(18)
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Figure 4. Illustrative shape instances sampled from the six-dimensional design space described in Section 5.

which results in an affine expression of the spline coefficients,
enabling the convex constraints,

A ≥ Amin or A ≤ Amax. (19)

In addition, we note that this approach may be used to ensure
that the vehicle design will be large enough to enclose a
convex internal payload of given size, such as a circle or
square.

Convex Approximations of Performance Indicators

After specifying our approach to shape parameterization and
geometric constraints we proceed to analyze the convexity of
the aerodynamic and electromagnetic performance measures
presented above. In doing so, we will find that they are strictly
convex over a trust region within which a globally optimal
design is likely to exist. We will then derive disciplined
convex programming [14] expressions for each performance
indicator in order to ease implementation of subsequent op-
timization problems in readily available convex optimization
modeling tools. Although the initial performance indicators
are convex over a trust region of interest, they are not globally
convex. In order to use common software packages, we
will express these functions as the maximum over a set of
piecewise linear functions. The resulting surrogates will
match the underlying functions exactly over the trust region.

Hypersonic Aerodynamics—Following the methods outlined
previously, the vehicle drag coefficient in a hypersonic flow
may be modelled as a summation of individual, linear panel
contributions, cdi . The second derivative of this per-panel
drag contribution, given in Eq. (4), with respect to ∆y is,

d2cdi

d∆y2
=

6∆x4∆y − 2∆x2∆y3

(∆x2 +∆y2)
3 , (20)

which is shown for multiple ∆x below in Fig. 5. This
function has a zero at ∆y =

√
3∆x, and is convex for

∆y ≤
√
3∆x. For present purposes we assume the design of

hypersonic vehicles with sharp leading edges, consistent with
those that reenter after traversing the upper atmosphere, but
not orbital velocities. These vehicles tend to be slender, with a
maximum thickness to length ratio much less than unity. The
convex region of the per panel drag contribution extends up
to a panel inclination of 60◦, a trust region which our design

Figure 5. Curvature of drag coefficient as function of ∆yi.

studies has shown is more than sufficient to model realistic
vehicle shapes.

Examining the case of ∆x = .005, we proceed to derive
a disciplined convex expression of cdi over the range 0 ≤
∆y ≤

√
3∆x. We approach this by sampling the value,

bi and derivative, mi, of the function at a dense number
of sample points, ∆yi. We then approximate the function,
cdi(∆y) as

cdi,pwl
(∆y) = maxi[(∆y −∆yi)mi + bi] (21)

The sampled points and associated slopes and line segments
of a dense sampling are shown in Fig. 6. For illustrative
purposes, we also show a closer view of the piecewise linear
nature of the approximation in Fig. 7, created using a much
coarser sampling.

One benefit of the piecewise linear approach is that cdi,pwl
=

0 automatically for segments of the vehicle for which ∆yi ≤
0, corresponding to zero drag contribution from areas of the
vehicle’s surface which are not impinged by the freestream
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Figure 6. Set of sampled linear approximations to cdi .

Figure 7. Coarsely sampled linear approximations to cdi and
piece-wise maximum over the set, cdi,pwl

, (shown as solid line).

flow. Using this fact, the final, approximated drag of the
vehicle is given as,

cdpwl
=
∑
k

maxi[(∆yk −∆yi)mi + bi]. (22)

In the general case, the CASO approach admits the use of
non-zero angles of attack and optimization problems involv-
ing lift coefficient and/or lift-to-drag ratio. In the current
paper, we focus on the case of zero angle of attack drag
for illustrative purposes and will develop the mechanisms for
extending this approach in a subsequent paper.

Radar Cross Section—The radar cross section variation of a
single linear panel, with fixed ∆x = 5/1000 is shown in
Fig. 8 for varying monostatic inclination angles, θ.

Based on the high speed (M∞ ≥ 5) and high operating
altitudes of hypersonic vehicles, by necessity the inclination
angle for observation will be quite low, on the order of θ =

Figure 8. Monostatic RCS variation (λ = 5cm).

5◦. In addition, long distance radar installations, of the type
used to identify such vehicles, often operate wavelengths near
λ = 0.05m.

Within these operating conditions, the RCS of a single panel
is a convex function over the range 0 ≤ ∆y ⪅ 5.75

√
3∆x,

for ∆x = 5/1000, well beyond the trust region established
for the case of hypersonic drag. We again generate a
piecewise linear representation for ease of implementation in
subsequent optimization problems.

Figure 9. Set of sampled linear approximations to σ, θ = 5◦, top
surface.

Unlike the per panel drag contribution, the panelwise radar
cross section contribution is not symmetric about the y-axis,
due to the nonzero inclination angle of the monostatic radar
wave. This results in separate convex conjugates for the upper
and lower surfaces, respectively. On the upper surface, where
∆x ≥ 0, the surface is shadowed from the radar wave, and
therefore σi = 0, in the case where ∆y ≥ ∆x tan(θ), as
shown in Fig. 9. On the bottom surface, where ∆x ≥ 0, the
surface also is shadowed from the radar wave, and therefore
σi = 0, in the case where ∆y ≥ ∆x tan(θ). However,
as shown in Fig. 10, this nonzero contribution now extends,
unlike drag at zero angle of attack, to slightly negative ∆yi
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Figure 10. Set of sampled linear approximations to σ, θ = 5◦, bottom
surface.

values.

As in the case of the drag, we arrive at a final, disciplined
convex programming surrogate by summing the panelwise
contributions, such that,

σpwl =
∑
bot

maxi[(∆yk −∆ybi)mbi + bbi ]+∑
top

maxi[(∆yk −∆yti)mti + bti ],
(23)

which also automatically ensures σi = 0 in the case where
∆yi ≤ ∆x tan(θ).

Design Problem Statement

Using the convex approximations derived above, we now pro-
ceed to identifying specific optimization problems of interest.
In particular, we are interested in problems which minimize
a convex combination of hypersonic drag and vehicle radar
cross section, while meeting various geometric constraints.

minimize
z

γcdpwl
+ (1− γ)σpwl

subject to fi(z) ≤ 0 (24)

where the design vector, z contains the sixteen coefficients
which define the spline segments of the upper and lower
surfaces. The functions fi are convex functions of the design
variables, which enforce geometric constraints on the vehicle.

In the next section, we demonstrate this approach with several
case study examples. We then proceed to compare this
implementation with a standard gradient based optimizer to
show the value of the convex approach.

6. CASE STUDY EXAMPLES
In this section, we will consider three examples of opti-
mization problems using this method. In developing these
problems, we will consider a sample mission of a hypersonic
vehicle traveling at zero angle of attack, α = 0, seeking
to evade a long-range, monostatic, C-band radar with λ =
0.05m. We will assume a radar wave incoming at an angle of
θ = 5◦.

Minimum Drag Subject to RCS and Geometric Constraints

The first example we examine is the problem of minimiz-
ing drag subject to a maximum radar cross section and a
minimum thickness, τmin at a prescribed location, xc. We
therefore state this problem as,

minimize
z

cdpwl

subject to yu(xc)− yl(xc) ≥ τmin

σpwl ≤ σmax

cu0
≥ 0

cl0 ≤ 0

yl(0) = yu(0) = yl(1) = yu(1) = 0

yu,l0(xknot) = yu,l1(xknot)

y′u,l0(xknot) = y′u,l1(xknot)

y′′u,l0(xknot) = y′′u,l1(xknot), (25)

For the case where σmax = 0.75, xc = 0.7 and τmin = .125,
we compute a minimum cd = 0.00114 with an area, A =
0.0805. The resulting vehicle cross section is shown below in
Fig. 11.

Figure 11. Optimal vehicle cross section: minimum drag subject to
maximum RCS constraint.

Optimal Tradeoff Curve: Minimum Area Constraint

The next example we present involves the minimization of
a convex combination of drag coefficient and radar cross
section along with a small regularization term on the squared
third derivative of the spline comprising the vehicle, subject
to a minimum area constraint. Formally, we seek to solve the
following problem,

minimize
z

γcdpwl
+ (1− γ)σpwl + ϵ

(∑
i

a2ui
+ a2li

)
subject to A(z) ≥ 0.15

cu0
≥ 0

cl0 ≤ 0

yl(0) = yu(0) = yl(1) = yu(1) = 0

yu,l0(xknot) = yu,l1(xknot)

y′u,l0(xknot) = y′u,l1(xknot)

y′′u,l0(xknot) = y′′u,l1(xknot), (26)

where z = [aui
bui

cui
dui

ali bli cli dli ], for
i ∈ [0 1]. We solve this problem for a variety of values
0 ≤ γ ≤ 1, and present the ensuing Pareto front below in
Fig. 12 and a sampling of vehicle shapes in Fig. 13.
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Figure 12. Optimal tradeoff between drag and radar cross section,
Amin = 0.15.

Optimal Tradeoff Curve: Minimum Thickness Constraint

The final example we present again involves the minimiza-
tion of a convex combination of drag coefficient and radar
cross section along with a small regularization term on the
squared third derivative of the spline comprising the vehicle.
However, in this case we implement a minimum thickness
constraint over a prescribed subsection of the vehicle. There-
fore, we now seek to solve the following problem,

minimize
z

γcdpwl
+ (1− γ)σpwl + ϵ

(∑
i

a2ui
+ a2li

)
subject to τ(x1 ≤ x ≤ x2) ≥ τmin

cu0
≥ 0

cl0 ≤ 0

yl(0) = yu(0) = yl(1) = yu(1) = 0

yu,l0(xknot) = yu,l1(xknot)

y′u,l0(xknot) = y′u,l1(xknot)

y′′u,l0(xknot) = y′′u,l1(xknot), (27)

where z = [aui
bui

cui
dui

ali bli cli dli ], for
i ∈ [0 1]. We solve this problem for a variety of values
0 ≤ γ ≤ 1, with x1 = 0.6, x2 = 0.8, and τmin = 0.15,
and present the ensuing Pareto front below in Fig. 14 and a
sampling of vehicle shapes in Fig. 15.

7. OPTIMIZATION COMPARISONS
As stated previously, convex optimization offers significant
benefits for situations where the objective and constraint
functions of a problem are convex. Because convex opti-
mization guarantees a global optimum in polynomial time,
no initialization point is required for the optimizer. This
ensures that problems can be solved accurately and quickly,
without the type of tuning that can be required for traditional,
nonconvex, gradient based optimizers. Especially when a
gradient is not available analytically, there can be significant,
and expensive, efforts required to tune the various conver-
gence and finite difference parameters. Below, we show three
comparisons running the minimum area case study example

using both convex optimization solvers as well as a readily
available sequential quadratic programming solver. In each
case, we run the gradient-based, SQP solver, from n = 256
random starting locations for each value of γ. Although,
through trial and error, it is possible to achieve identical re-
sults, several orders of magnitude in the finite difference step
creates dramatically poorer convergence to the true global
optima along the Pareto front. For reference, the convex
optimization solutions were created using CVXPY2, which
transforms problems into a standard conic form, which are
then solved using MOSEK3. The gradient based optimization
was performed using MATLAB’s fmincon function, with
the sequential quadratic programming algorithm and central
finite differencing, with stepsize, h. The results are shown
below in Figs. 16 to 18.

8. CONCLUSIONS
In this paper, we have proposed and implemented a new
approach, termed Convexity Assisted Shape Optimation
(CASO), for applying convex optimization to multidisci-
plinary design optimization problems combining hypersonic
aerodynamics and radar cross section. We have applied
this method to several test cases combining the optimization
of drag and radar cross section with geometric constraints,
including minimum area and minimum thickness constraints.
Finally, we have demonstrated the user benefits of a convex
optimization approach, with a significant reduction in time
spent tuning optimizer configurations.
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(a) γ = 0.0 - prioritized rcs reduction (b) γ = 0.5 - equally prioritized rcs and drag (c) γ = 1.0 - prioritized drag reduction
Figure 15. Optimal vehicle cross sections (minimum thickness constraint, shown) for varying γ (θ = 5◦, α = 0◦).

Figure 16. Optimal results: CVXPY vx SQP, h = 6× 10−6.
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Figure 17. Optimal results: CVXPY vx SQP, h = 5× 10−11.

Figure 18. Optimal results: CVXPY vx SQP, h = 5× 10−14.
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