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Abstract

Iterative first-order methods such as gradient descent and
its variants are widely used for solving optimization and
machine learning problems. There has been recent in-
terest in analytic or numerically efficient methods for
computing worst-case performance bounds for such al-
gorithms, for example over the class of strongly convex
loss functions. A popular approach is to assume the algo-
rithm has a fixed size (fixed dimension, or memory) and
that its structure is parameterized by one or two hyper-
parameters, for example a learning rate and a momen-
tum parameter. Then, a Lyapunov function is sought
to certify robust stability and subsequent optimization
can be performed to find optimal hyperparameter tun-
ings. In the present work, we instead fix the constraints
that characterize the loss function and apply techniques
from robust control synthesis to directly search over algo-
rithms. This approach yields stronger results than those
previously available, since the bounds produced hold over
algorithms with an arbitrary, but finite, amount of mem-
ory rather than just holding for algorithms with a pre-
scribed structure.

1 Introduction

First-order methods are a widely used class of iterative
algorithms for solving optimization problems of the form
minx∈Rn f(x), where f is continuously differentiable and
we only have access to first-order (gradient) measure-
ments of f . An example of a first-order method is the
heavy ball method [14], which uses iterations of the form

xk+1 = xk − α∇f(xk) + β(xk − xk−1). (1)

Here, α and β are parameters to be tuned. When β = 0,
we recover the well-known gradient descent algorithm.
Algorithms such as (1) are called accelerated because
when they are appropriately tuned, they can achieve
faster convergence than by using gradient descent alone.

To quantify convergence, we typically make assump-
tions about f , and then bound the worst-case conver-
gence rate of the algorithm over all functions that satisfy
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the assumptions. For example, suppose f is strongly con-
vex and has Lipschitz-continuous gradients, which means
there exists 0 < m ≤ L such that [11, Thm. 2.1.12]

[
∇f(x)−∇f(y)

x− y

]T[−2mL L+m
L+m −2

][
∇f(x)−∇f(y)

x− y

]
≥ 0

for all x, y ∈ Rn. (2)

If x? := arg minx∈Rn f(x), then gradient descent with
0 ≤ α ≤ 2

L+m satisfies [11, §2.1.5]

‖xk+1 − x?‖ ≤
√

1− 2αmL
L+m ‖xk − x?‖. (3)

In other words, the sequence of iterates {x0, x1, . . . } con-
verges to the global optimizer x? at a geometric rate. The
fastest rate bound is L−m

L+m , achieved when α = 2
L+m .

In an attempt to generalize these types of results and
better understand the behavior of iterative algorithms
and how they should be tuned, recent works have focused
on a dynamical systems interpretation of optimization
algorithms. In other words, the iterate sequence {xk}
corresponds to the state, and the index k serves the role
of time. Viewed in this light, convergence of an algorithm
is equivalent to the stability of the associated equilibrium
point of the dynamical system.

A recently proposed approach uses robust control to
analyze worst-case convergence rates [4, 7, 8, 10]. Here,
the algorithm itself plays the role of the controller, and
the gradient mapping ∇f is the uncertain plant. This
viewpoint has also been extended to analyze operator-
splitting methods [12] and distributed optimization algo-
rithms [16].

Main contributions. In the aforementioned robust
control approach, the results obtained are general in
the sense that they hold across all choices of parame-
ters as in (3), but they are fundamentally constrained by
the structure of the algorithm; the particular parametric
form of the iterates such as (1).

In the present work, we apply tools from robust control
synthesis to derive performance bounds that are indepen-
dent of parametric forms such as (1) and hold over broad
classes of algorithms. These results adapt the approach
in [6] for the purpose of synthesizing algorithms that op-
timize the convergence rate.

Specifically, we consider the class of functions with
sector-bounded gradients (a weaker version of (2)). We
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show that, for this function class, gradient descent with
stepsize 2

L+m achieves the fastest possible worst-case con-
vergence rate not only among all tunings of gradient de-
scent, but among any algorithm representable as a linear
time-invariant (LTI) system with finite state. This in-
cludes algorithms of the form (1) but where xk+1 depends
linearly on {xk, xk−1, . . . , xk−`} for some fixed `.

Our analysis also extends to the case where ∇f is char-
acterized by a given and fixed integral quadratic con-
straint (IQC). In this case, we prove that when using the
so-called off-by-one IQC introduced in [10], which is sat-
isfied by the class of functions (2), the optimal rate over
any LTI algorithm is achieved by a particular accelerated
method known as the triple momentum method [17].

The remainder of the paper is organized as follows. In
Section 2, we introduce the machinery from robust con-
trol synthesis that will be used throughout the rest of
the paper. In Sections 4 and 5, we specialize the anal-
ysis to the sector-bounded and IQC cases, deriving the
optimal LTI algorithms in both instances. We conclude
in Section 7 with some closing remarks.

2 Preliminaries

Notation. We use� and� to denote matrix inequality
in the definite and semi-definite sense, respectively. XT

denotes the matrix transpose. We use the short-hand
notation: symX := X + XT with the convention that
products are expanded as symXY = XY + Y TXT.

Linear matrix inequalities. Most of the algebraic
manipulations in the sequel involve linear matrix inequal-
ities (LMI), which have now become a widespread tool in
optimization and control. We refer the reader to [2] and
references therein. We will make use of three fundamen-
tal results involving LMIs. The first is a basic property
of the Schur complement, which can convexify certain
semidefinite programs by converting them into an LMI.

Proposition 1. Let A,B,C be matrices of compatible
dimensions such that we can define the block matrix:
X :=

(
A B
BT C

)
and suppose X = XT and C � 0. Then,

X � 0 if and only if A − BC−1BT � 0. The result also
holds when � is replaced by �.

The second fundamental result is called the matrix
elimination lemma, by Gahinet and Apkarian [6]. This
result applies to matrix inequalities with affine depen-
dence on a matrix of decision variables and is useful for
eliminating controller parameters to obtain results inde-
pendent of controller state dimension.

Lemma 2 ([6]). Given a symmetric matrix Ψ ∈ Rn×n
and two matrices P , Q of column dimension n, consider
the problem of finding some matrix Θ of compatible di-
mensions such that

Ψ + PTΘTQ+QTΘP ≺ 0. (4)

Denote by WP , WQ any matrices whose columns form
bases for the null spaces of P and Q respectively. Then
there exists Θ satisfying (4) if and only if

WT
PΨWP ≺ 0 and WT

QΨWQ ≺ 0.

The third fundamental result we will use is called
the matrix completion lemma, by Packard et al. [13,
Lem. 7.5]. This result describes how a pair of matrices
can be augmented to satisfy an inverse relationship.

Lemma 3 ([13]). Suppose X,Y ∈ Rn×n, with X = XT �
0 and Y = Y T � 0. Let m be a positive integer. Then
there exist matrices X2 ∈ Rn×m, X3 ∈ Rm×m such that
X3 = XT

3 , and
[
X X2

XT
2 X3

]
� 0 and

[
X X2

XT
2 X3

]−1

=

[
Y ?
? ?

]

if and only if X − Y −1 � 0, and rank(X − Y −1) ≤ m.

Remark 4. Applying Proposition 1, the condition in
Lemma 3 can be expressed as an LMI in X and Y :

X − Y −1 � 0 if and only if

[
X I
I Y

]
� 0.

Also note that the condition rank(X−Y −1) ≤ m is triv-
ially satisfied for any m ≥ n.

Exponential stability with IQCs. Finally, we will
make use of an LMI for bounding the worst-case expo-
nential convergence rate of a linear dynamical system
subject to integral quadratic constraints (IQCs). Similar
LMIs have appeared in [1, 9, 15].

Lemma 5. Consider the discrete-time LTI system G,
which maps u 7→ y and obeys the dynamics:

ξk+1 = AGξk +BGuk (5a)

yk = CGξk +DGuk (5b)

Fix ρ ∈ (0, 1], and consider the auxiliary system Ψρ,
which maps (y, u) 7→ z and obeys the dynamics:

ζk+1 = AΨζk +BΨ1yk +BΨ2uk (6a)

zk = CΨζk +DΨ1yk +DΨ2uk (6b)

Suppose (y, u) satisfies the ρ-Integral Quadratic Con-
straint (ρ-IQC) defined by (Ψρ,M). That is,

T∑

k=0

ρ−2kzTkMzk ≥ 0 for T = 0, 1, . . . (7)

Define state-space matrices for the map u 7→ z:
[
A B

C D

]
:=




AG 0 BG
BΨ1CG AΨ BΨ2 +BΨ1DG

DΨ1CG CΨ DΨ2 +DΨ1DG


 .

If there exists some P � 0 such that
[
A B

]T
P
[
A B

]
− ρ2

[
I 0

]T
P
[
I 0

]

+
[
C D

]T
M
[
C D

]
� 0, (8)

then the state of G converges to zero at an exponential
rate of ρ. Specifically, limk→∞ ρ−kξk = 0 for all initial
states (ξ0, ζ0).

2



3 Algorithms as control systems

Following the line of research developed in [7, 10], we
formulate the problem of iterative algorithm analysis as a
control problem. Specifically, we will consider algorithms
set up as in Figure 1.

1
z−1 K(z)

∇f

w

ye

Figure 1: Block diagram representing an iterative op-
timization algorithm. The integrator is present so that
the algorithm can converge with no steady-state error for
any initial condition of K.

The iterative algorithm must contain a pure integrator,
i.e. it must take the form K(z) 1

z−1 where K(z) is an LTI
system that represents the algorithm. Assume K(z) has
a state-space realization (AK , BK , CK , DK). Let w ∈ R
and q ∈ RnK be the state of integrator and K(z), respec-
tively. The order of K(z), denoted nK , is unspecified at
this point, i.e. the algorithm may have a finite but ar-
bitrary amount of memory. A realization for K(z) 1

z−1
from input ek to output yk is given by:

wk+1 = wk + ek (9a)

qk+1 = AKqk +BKwk (9b)

yk = CKqk +DKwk (9c)

This representation is very general. For example, the
heavy-ball method is represented byK(z) = −αz

(z−β) , which

corresponds to AK = CK = β and BK = DK = −α.
Meanwhile, the gradient descent algorithm corresponds
to the static gain K(z) = −α.

Dimensionality reduction. Throughout this paper,
we assume for convenience that K(z) is a single-input,
single-output (SISO) system. For algorithms such as
heavy-ball (1) where α and β are scalars, this assump-
tion is not restrictive. Indeed, the transfer function for
the heavy-ball algorithm takes the form Id ⊗ K(z) 1

z−1 ,

where xk ∈ Rd in (1). The IQCs we will use to de-
scribe ∇f and hence the LMIs (8) will also have a block-
Kronecker form. These facts allow us to restrict our at-
tention to SISO K(z) without any loss of generality. For
further discussion on this type of dimensionality reduc-
tion, see [10, §4.2].

Loop transformation. The case of interest in this pa-
per is where the function f is strongly convex and has
Lipschitz gradients (2). This implies, in the language
of robust control, that ∇f is sector-bounded and slope-
restricted in the interval (m,L). In order to streamline
the rest of the paper, we will perform a loop transforma-
tion to shift this interval to (−1, 1). The transformation
is shown in Figure 2.

1
z−1K(z)L−m

2

L+m
2

+

∇f2
L−m

−L+m
2

+

yu G(z)

φ

Figure 2: Loop Transformation. If ∇f is in the sector
(m,L), then φ is in the sector (−1, 1).

The loop-shifting transformation normalizes the non-
linearity φ to lie in the sector (−1, 1). As a result,
uk = φ(yk) satisfies the pointwise-in-time constraint:

[
yk
uk

]T [
1 0
0 −1

] [
yk
uk

]
≥ 0. (10)

The input to K(z) 1
z−1 is transformed by the following

algebraic equation: ek = L−m
2 uk + L+m

2 yk. A realization
for the transformed system G(z) is obtained by combin-
ing this relation with (9). Eliminating ek yields the fol-
lowing state-space realization with state (qk, wk):

G(z) :=

[
AG BG

CG DG

]
=




AK BK 0
L+m

2 CK 1+ L+m
2 DK

L−m
2

CK DK 0




(11)

4 Sector-bounded nonlinearities

In this section we treat the analysis problem for the spe-
cial case where ∇f is sector-bounded. This assumption
corresponds to relaxing (2) to hold only between an ar-
bitrary point and the optimizer of f . In other words, (2)
reduces to:

[
∇f(x)
x− x?

]T[−2mL L+m
L+m −2

][
∇f(x)
x− x?

]
≥ 0 for all x ∈ Rn.

From the IQC standpoint, this means that we assume the
transformed nonlinearity φ only satisfies the pointwise-
in-time constraint (10).

Our goal is to find an algorithm (AK , BK , CK , DK)
such that the convergence rate ρ is minimized. The sector
IQC (10) has no dynamics, so let z = ( yu ). In this case,
Ψ = I2 and the state matrices for the map u 7→ z in
Lemma 5 simplify to:

[
A B

C D

]
:=

[
AG BG[
CG
0

] [
DG
1

]
]
.
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By Lemma 5, iterates converge with rate ρ ∈ (0, 1] if
there exists P � 0 such that:
[
AG BG

]T
P
[
AG BG

]
− ρ2

[
I 0

]T
P
[
I 0

]

+

[
CG DG

0 1

]T [
1 0
0 −1

] [
CG DG

0 1

]
� 0. (12)

We can rearrange the LMI above to the form:
[
AG BG
CG DG

]T [
P 0
0 1

] [
AG BG
CG DG

]
−
[
ρ2P 0

0 1

]
� 0. (13)

The design corresponds to synthesizing the algorithm
(AK , BK , CK , DK), Lyapunov matrix P � 0, and conver-
gence rate bound ρ ∈ (0, 1]. The matrix inequality (13)
is nonlinear due to products of these variables. Applying
Proposition 1, we can write the equivalent condition:


ρ2P 0 AT
G CT

G

0 1 BT
G DT

G

AG BG P−1 0
CG DG 0 1


 � 0, and P � 0. (14)

From (11), we can write (AG, BG, CG, DG) as an affine
function of the controller parameters. In the equation
below, dashed lines indicate block structure (not state-
space notation).

[
AG BG
CG DG

]
=




0 0 0
0 1 L−m

2

0 0 0




+



I 0
0 L+m

2

0 1



[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
I 0 0
0 1 0

]
(15)

Substituting (15) into (14), we obtain:



ρ2P [ 0
0 ] [ 0 0

0 1 ] [ 0
0 ]

[ 0 0 ] 1
[

0
L−m

2

]
0

[ 0 0
0 1 ]

[
0

L−m
2

]
P−1 [ 0

0 ]

[ 0 0 ] 0 [ 0 0 ] 1




︸ ︷︷ ︸
Ψ

+ sym




0 0
0 0

[ I0 ]
[

0
L+m

2

]

0 1


K

[
[ I 0 ] 0 0 0

[ 0 1 ] 0 0 0

]
� 0, (16)

where sym is the shorthand notation we defined in Sec-
tion 2 and K is defined in (15). By Lemma 2, the
LMI (16) is feasible if and only if a pair of conditions
hold. In this case, the conditions are:


I 0 [ 0 0 ] 0

0 1 [ 0 0 ] 0

0 0 [ 0 1 ] −L+m
2


Ψ



I 0 [ 0 0 ] 0

0 1 [ 0 0 ] 0

0 0 [ 0 1 ] −L+m
2




T

� 0




[ 0
0 ] [ 0

0 ] [ 0
0 ]

1 0 0
0 I 0
0 0 1




T

Ψ




[ 0
0 ] [ 0

0 ] [ 0
0 ]

1 0 0
0 I 0
0 0 1


 � 0

where Ψ is defined in (16). Carrying out the matrix mul-
tiplications and simplifying yields:



ρ2P [ 0

0 ] [ 0
1 ]

[ 0 0 ] 1 L−m
2

[ 0 1 ] L−m
2 [ 0

1 ]
T
P−1[ 0

1 ] + (L+m
2 )2


 � 0, (17a)




1
[

0
L−m

2

]
0[

0
L−m

2

]
P−1 [ 0

0 ]

0 [ 0 0 ] 1


 � 0 (17b)

Applying Proposition 1 to the first 2 × 2 block of (17a)
we obtain the following equivalent condition:

r + (L+m
2 )2 −

(
ρ−2r + (L−m2 )2

)
≥ 0

where r := [ 0
1 ]

T
P−1[ 0

1 ] > 0. This simplifies to:

mL ≥ (ρ−2 − 1)r (18)

Next, Equation (17b) is feasible if and only if the first 2×2
block is feasible. Applying Proposition 1 to the upper left
corner of this 2×2 block yields: r ≥ (L−m2 )2. Combining
with (18) yields 4mL ≥ (ρ−2− 1)(L−m)2. Solving for ρ
yields: ρ ≥ L−m

L+m , which is precisely the optimal gradient
rate bound described in Section 1. Indeed, if we also

set P−1 =

[
ε 0
0 (L−m2 )2

]
for any ε > 0, Equation (17) is

satisfied. SettingDK = − 2
m+L (andAK empty), which is

the gradient method with optimal stepsize, renders (16)
feasible too.

Discussion. It is known that for gradient descent,
choosing α = 2

m+L optimizes the rate bound (3) for
strongly convex functions with Lipschitz continuous gra-
dients. Similar results have shown that the same up-
per bound (and optimal stepsize) holds if we constrain f
to be quadratic or if we relax f to merely have sector-
bounded gradients [10]. It is also straightforward to show
that the rate bound of L−m

L+m is tight, because it is at-
tained when using this algorithm to optimize the scalar
quadratic function f(x) := m

2 (x− x?)2.

This bound assumes the algorithm in question is gradi-
ent descent. In this section, we showed that for the class
of functions with sector-bounded gradients, gradient de-
scent with α = 2

L+m is in fact optimal over all algorithms
that can be expressed as LTI systems (of any fixed order)
in feedback with ∇f , as in Figure 2. Put another way,
when using sector-bounded gradients, we cannot improve
our upper bound by using more complex algorithms.

5 Sector-bounded and slope restricted

We now extend our approach from Section 4 to the case
where ∇f is both sector-bounded and slope-restricted.
Specifically, we assume that f is strongly convex with
Lipschitz-continuous gradients so that ∇f satisfies the
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constraints in (2). The transformed nonlinearity φ thus
satisfies the normalized constraint for all x, y ∈ Rn:

[
x− y

φ(x)− φ(y)

]T [
1 0
0 −1

] [
x− y

φ(x)− φ(y)

]
≥ 0.

Such functions satisfy a general class of ρ-IQCs defined by
Zames–Falb multipliers [1,3,5]. For now, we will assume a
general IQC of the form (6), and we further break apart z
into its two components, thereby resulting in joint plant-
IQC dynamics:
[
ξk+1

ζk+1

]
=

[
AG 0

B1
ΨCG AΨ

] [
ξk
ζk

]
+

[
BG

B1
ΨDG +B2

Ψ

]
uk

[
z1
k

z2
k

]
=

[
D11

Ψ CG C1
Ψ

D21
Ψ CG C2

Ψ

] [
ξk
ζk

]
+

[
D11

Ψ DG +D12
Ψ

D21
Ψ DG +D22

Ψ

]
uk

Substituting (AG, BG, CG, DG) from (11), obtain:


qk+1

wk+1

ζk+1


=




AK BK 0
L+m

2 CK 1+ L+m
2 DK 0

B1
ΨCK B1

ΨDK AΨ





qk
wk
ζk


+




0
L−m

2
B2

Ψ


uk

(19a)

[
z1
k

z2
k

]
=

[
D11

Ψ CK D11
Ψ DK C1

Ψ

D21
Ψ CK D21

Ψ DK C2
Ψ

]

qk
wk
ζk


+

[
D12

Ψ

D22
Ψ

]
uk

(19b)

This closed loop includes the algorithm (integrator and
controller) and the IQC states. The closed-loop state

matrices are denoted

(
A,B,

[
C1

C2

]
,

[
D1

D2

])
. In this case

the LMI in Lemma 5 looks different because the IQC
term is quadratic in (z1, z2) instead of (y, u). We obtain:

[
A B
C1 D1

]T [
P 0
0 1

] [
A B
C1 D1

]

−
[
I 0
C2 D2

]T [
ρ2P 0

0 1

] [
I 0
C2 D2

]
� 0

As before, we can use Proposition 1 to convert this to a
single LMI:



ρ2P + CT
2 C2 CT

2 D2 AT CT
1

DT
2C2 DT

2D2 BT DT
1

A B P−1 0
C1 D1 0 1


 � 0, P � 0 (20)

Equation (20) will be affine in the algorithm parameters
(AK , BK , CK , DK) and everything will carry through as
before if C2 and D2 do not depend on the algorithm
parameters. If we examine the formulas of (19b), this
amounts to requiring for example that D21

Ψ = 0 and
D22

Ψ = 1. So the question becomes: is it possible to
find a factorization Ψ of the IQC with this property?

The general Zames–Falb ρ-IQC for a nonlinearity that
is sector-bounded and slope-restricted on (−1, 1) is:

Π(z) :=
1

2

[
2− ĥ− ĥ∗ ĥ− ĥ∗
ĥ∗ − ĥ −2 + ĥ+ ĥ∗

]

Where ĥ(z) is a discrete-time transfer function with im-
pulse response hk satisfying:

∞∑

k=−∞
max

(
1, ρ−2k

)
|hk| ≤ 1

If we assume for now that the Zames–Falb ρ-IQC is
causal, then a possible factorization is:

Π(z) = Ψ(z)∗
[
1 0
0 −1

]
Ψ(z), with Ψ(z) =

1

2

[
2−ĥ ĥ

ĥ 2−ĥ

]
.

Assume ĥ is a finite impulse response filter, i.e. ĥ(z) =
h1z
−1 + h2z

−2 + · · ·+ hkz
−k. Consider the realization:

Ψ(z) =




0 1 · · · 0 0 0

0 0
. . .

...
...

...
...

...
. . . 1 0 0

0 0 · · · 0 1
2 − 1

2

−hk −hk−1 · · · −h1 1 0
hk hk−1 · · · h1 0 1




We see that D21
Ψ = 0 and D22

Ψ = 1, as desired. Therefore,

Equation (20) holds, but the ĥ coefficients only appear
in C1 and C2, and the algorithm parameters only appear
in an affine fashion and in the terms A,B,C1, D1. The
lower-left corner of (20) can be written in terms of the
algorithm parameters by substituting (19). The result is
(again, dashed lines indicate block structure)

[
A B
C1 D1

]
=




0 0 0 0
0 1 0 L−m

2
0 0 AΨ B2

Ψ

0 0 C1
Ψ D12

Ψ




︸ ︷︷ ︸
Φ

+




I 0
0 L+m

2
0 B1

Ψ

0 D11
Ψ




︸ ︷︷ ︸
S

[
AK BK
CK DK

]

︸ ︷︷ ︸
K

[
I 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
T

(21)

Let columns of S⊥ and T⊥ be bases for the left and right
nullspaces of S and T , respectively. These are given by:

S⊥ =




I 0
0 L+m

2
0 B1

Ψ

0 1




⊥

=

[
0 1 0 −L+m

2
0 0 B⊥1 B⊥2

]
,

T⊥ =

[
I 0 0 0
0 1 0 0

]⊥
=




0 0
0 0
I 0
0 1




where
[
B⊥1 B⊥2

] [B1
Ψ

1

]
= 0. Substituting (21) into (20)

and applying Lemma 2, the LMI condition (20) is feasible
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if and only if:

[
I 0
0 S⊥

]



[
ρ2P + CT

2 C2 C
T
2

C2 1

]
ΦT

Φ

[
P−1 0

0 1

]



[
I 0
0 S⊥

]T
� 0

[
T⊥ 0
0 I

]T



[
ρ2P + CT

2 C2 C
T
2

C2 1

]
ΦT

Φ

[
P−1 0

0 1

]



[
T⊥ 0
0 I

]
� 0

Expanding and factoring the (1,1) block to expose P :




[
I 0
C2 1

]T [
ρ2P 0

0 1

] [
I 0
C2 1

]
ΦTS⊥T

S⊥Φ S⊥
[
P−1 0

0 1

]
S⊥T


 � 0



T⊥T

[
I 0
C2 1

]T [
ρ2P 0

0 1

] [
I 0
C2 1

]
T⊥ T⊥TΦT

ΦT⊥
[
P−1 0

0 1

]


 � 0

Apply Proposition 1 to the (1,1) block of the first LMI
above to obtain an equivalent LMI in Q := P−1. Next
apply Proposition 1 to the (2,2) block of the second LMI
above to obtain an equivalent LMI in P . This yields the
following two conditions:

S⊥
[
Q 0
0 1

]
S⊥T

− S⊥Φ

[
I 0
−C2 1

] [
ρ−2Q 0

0 1

] [
I 0
−C2 1

]T
ΦTS⊥T � 0

T⊥T
[
I 0
C2 1

]T [
ρ2P 0

0 1

] [
I 0
C2 1

]
T⊥

− T⊥TΦT

[
P 0
0 1

]
ΦT⊥ � 0

These LMIs are block 4 × 4 and the dimensions are
(nK+1+nΨ+1). To proceed further, we need to break P
and Q into their 3× 3 blocks. These blocks have dimen-
sions (nK + 1 + nΨ). Substitute for (S⊥, T⊥) and note
that C2 simplifies to: C2 =

[
D21

Ψ CK D21
Ψ DK C2

Ψ

]
=[

0 0 C2
Ψ

]
. Upon further simplification, we find the

first block-rows and block-columns of P and Q (which
had dimension nK cancel out. The resulting LMIs are:

[
1 0 −L+m

2
0 B⊥1 B⊥2

]

Q22 Q23 0
Q32 Q33 0

0 0 1


 [?

]T

−
[
1 0 −L+m

2
0 B⊥1 B⊥2

]


1 0 L−m
2

0 AΨ B2
Ψ

0 C1
Ψ D12

Ψ






1 0 0
0 I 0
0 −C2

Ψ 1




×



ρ−2Q22 ρ−2Q23 0
ρ−2Q32 ρ−2Q33 0

0 0 1


 [?

]T � 0 (22a)

[
?
]T


ρ2P22 ρ2P23 0
ρ2P32 ρ2P33 0

0 0 1






1 0 0
0 I 0
0 C2

Ψ 1






0 0
I 0
0 1




−
[
?
]T


P22 P23 0
P32 P33 0
0 0 1






1 0 L−m
2

0 AΨ B2
Ψ

0 C1
Ψ D12

Ψ






0 0
I 0
0 1


 � 0

(22b)

These conditions are two LMIs involving (sub-blocks) of
P and Q but coupled by the non-convex constraint PQ =
I. Apply Lemma 3 to replace the non-convex constraint
by a rank constraint and the following LMI:




P22 P23 1 0
P32 P33 0 I
1 0 Q22 Q23

0 I Q32 Q33


 � 0 (22c)

The rank constraint is trivially satisfied if nK ≥ 2 and
hence can be neglected. In this case (22) provides a set of
three LMI conditions in P and Q. In particular, nK = 2
corresponds to a third-order algorithm (two states in K
plus the additional integrator).

Discussion. For each fixed value of ρ, if (22) is feasi-
ble for some P and Q, then it is possible to synthesize a
controller (AK , BK , CK , DK) for which the rate of con-
vergence ρ is certified over the class of sector-bounded
and slope-restricted functions.

Unlike previous analyses where the algorithm is fixed
and one seeks to certify a certain convergence rate by
searching over IQCs of a given class [4,8,10,12,16], here
we fix the particular Zames-Falb IQC and instead certify
a rate of convergence over all possible algorithms. This
synthesis is performed numerically in the next section for
the class of off-by-one IQCs.

6 Off-by-one IQC certification

A special instance of the general class of Zames–Falb mul-
tipliers discussed in Section 5 is the weighted off-by-one
ρ-IQC [10]. For a given ρ ∈ (0, 1] and any h1 ∈ [0, ρ2],
the function φ satisfies the ρ-IQC defined by:

AΨ = 0, BΨ =
[

1
2 − 1

2

]
, CΨ =

[
−h1

h1

]
,

DΨ =

[
1 0
0 1

]
, M =

[
1 0
0 −1

]
.

(23)

The filter Ψ is parameterized by ρ and the free variable
h1. It has one timestep of memory and the correspond-
ing ρ-IQC captures the slope conditions that must hold
between data (yk, uk) = (yk, φ(yk)) at one timestep and
the previous timestep (yk−1, uk−1). If h1 = 0 then the
constraint reduces to the sector IQC. In other words, this
form of the weighted off-by-1 subsumes the sector bound
used in Section 4. The more general Zames–Falb multi-
pliers uses a filter Ψ with additional memory to incorpo-
rate the slope constraints across multiple time steps.
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Substituting the IQC (23) into the semidefinite pro-
gram (22) and using h1 = ρ2 as in [10], we obtain a
convex program in (P,Q) for each fixed value of ρ (and
for fixed values of L and m). Performing a bisection
search on ρ, we can obtain the minimum ρ such that
the LMI is feasible. We plot this result in Figure 3,
where we can see that the numerical results agree per-
fectly with ρ = 1 −

√
m/L, which is the fastest known

convergence rate achievable for strongly convex functions
with Lipschitz-continuous gradients, and it is achieved by
the triple momentum method [17].

100 101 102 103 104

value of L/m

0.0

0.2

0.4

0.6

0.8

1.0

co
n
v
er

g
en

ce
ra

te
ρ

numerical solution of LMI

analytic solution: ρ = 1−
√
m/L

Figure 3: The circular dots are numerical solutions of
the LMI (22) for different values of L/m, using the off-
by-one IQC and performing a bisection search on ρ. The
solid curve is a plot of the function ρ = 1−

√
m/L, which

is the fastest known achievable worst-case rate [17].

7 Concluding remarks

We demonstrated that tools from robust synthesis can
be leveraged for algorithm design. Unlike prior works
that fix the algorithm size (fixed memory) and seek a
Lyapunov candidate that guarantees a certain conver-
gence rate over a class of functions, we instead fix the
IQC used to characterize the class of functions, and then
search over all possible algorithms (with finite but arbi-
trary memory) for the fastest certifiable rate.

We show that if ∇f is sector-bounded, no algorithm of
any size can outperform gradient descent. We then show
that if ∇f satisfies the weighted off-by-one ρ-IQC [10],
no algorithm of any (finite) memory can outperform the
triple momentum method. In short, we show that elim-
inating the control variables from the associated LMIs
can lead to novel algorithm performance bounds that are
independent of algorithm dimension.
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