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Abstract

We identify a broad class of decentralized output-
feedback LQG systems for which the optimal control
strategies have a simple and intuitive estimation struc-
ture. We consider cases for which the coupling of dynam-
ics among subsystems and the inter-controller communi-
cation are characterized by the same directed graph. For
the class of graphs known as multitrees, we show that
each controller need only estimate the states of the sub-
systems it affects (its descendants) as well as the sub-
systems it observes (its ancestors). The optimal control
action for each controller is a linear function of the es-
timate it computes and the estimates computed by its
ancestors. Moreover, all state estimates may be updated
recursively, much like a Kalman filter.

1 Introduction

The past decade has seen a resurgence of interest in de-
centralized control problems; where different controllers
must make decisions using different subsets of the avail-
able information. A central question in the investigation
of decentralized problems is whether the ever-growing in-
formation history available to controllers be aggregated
without compromising performance. In other words: do
the optimal controllers have convenient sufficient statis-
tics? In this paper, we identify a broad class of informa-
tion structures and associated control problems for which
the above questions have an affirmative answer.

We represent information structures by using directed
acyclic graphs (DAG), where each node represents both
a subsystem and its associated controller, and the edges
indicate both the influence of state dynamics between
subsystems as well as information-sharing between con-
trollers. An example is shown in Figure 1.

Our main result, formally stated in Section 3, may be
summarized by the following intuitive statement: each
controller must maintain state estimates of the subsys-
tems that it observes (its ancestors) as well as state es-
timates of subsystems that it affects through its deci-
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Figure 1: Directed acyclic graph (DAG) representing the
information structure of a decentralized control problem.
An edge i → j means that subsystem i affects subsys-
tem j through its dynamics and controller i shares its
information with controller j (but not vice versa).

sions (its descendants). In the example of Figure 1,
the controller at node 1 must estimate the states of
nodes {1,3,5}, while the controller at node 4 must es-
timate the states of nodes {2,4}. The optimal control
action for each controller is a linear function of the esti-
mate it computes as well as the estimates computed by
all of its ancestors. In addition to proving the sufficient
statistics, we show that they admit a recursive represen-
tation, similar to that of the Kalman filter.

Our results hold for LQG systems; all dynamics are lin-
ear (possibly time-varying), process noise and measure-
ment noise is Gaussian, and the cost function is quadratic
over a finite time horizon. We must also impose some re-
strictions on which pairs of nodes may be coupled by the
quadratic cost and which pairs of nodes may be driven
by correlated Gaussian disturbances. These assumptions
are stated precisely in Section 2.4. The associated DAG
may be any multitree. In other words: in the transitive
reduction of the DAG, each pair of nodes can be con-
nected by at most one directed path. For example, if we
add the edge 4 → 5 to Figure 1 the multitree assump-
tion is now violated because there are now two separate
directed paths connecting 2 to 5.

A key aspect of this work is that we consider output
feedback. While the presence of measurement noise makes
the problem considerably more difficult to solve than the
state-feedback case, we nevertheless show that the opti-
mal controller has a simple and intuitive structure.

Due to space constraints, we will provide a proof out-
line of our main result only for the specific information
structure of Figure 1. Although this graph is relatively
simple, it captures the salient features of our approach
and it will be clear how the proof can be generalized to
more general graphs. For the interested reader, a detailed
proof of the general multitree case is available online [16].
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1.1 Prior work

The analytical and computational difficulty of general de-
centralized control problems with arbitrary information
structure has been widely acknowledged [2, 27]. There
has been considerable interest in identifying classes of
information structures that may be “easier” to solve.

In the team-theory inspired literature on decentralized
control, a key simplifying feature is the notion of par-
tial nestedness (PN) [4]. A decentralized LQG problem
with a PN information structure admits a linear control
strategy that is globally optimal. Further, it can be re-
duced (at least for finite horizon problems) to a static
LQG team problem for which person-by-person optimal
strategies are globally optimal [19]. Despite these facts, a
universal and computationally efficient methodology for
finding optimal strategies for all partially nested prob-
lems remains elusive.

Another approach is to formulate the control problem
as a closed-loop norm optimization. In this framework,
some simplifying properties of the plant and information
constraint have been identified. These properties imply
convexity of the set of achievable closed-loop maps. Ex-
amples of such properties include quadratic invariance
(QI) [20], funnel causality [1], and certain hierarchical ar-
chitectures [18]. Despite the convexity, the optimization
problem is infinite dimensional in general and therefore
hard to solve.

A widely used model for PN/QI problems in decentral-
ized control is to assume the plant dynamics and the con-
troller structure are characterized by the same directed
graph. The first solutions to problems of this kind as-
sumed state feedback [22, 23]. The case of noisy measure-
ments (output feedback) was found to be considerably
more difficult because the problem cannot be split into
separate problems as in the state feedback case. How-
ever, the problem-splitting approach still holds if only
the leaf-nodes have noisy measurements [5, 17, 24]. The
first solution to a full output feedback case was for a two-
subsystem problem [12, 13]. This result was later gen-
eralized to star-shaped graphs in [11] and linear chain
graphs in [25].

Although the above works considered continuous-time
systems, the results can easily be adapted to a discrete-
time setting as well. Discrete-time formulations for de-
centralized problems were used in the 70’s for treating
partially nested “delayed-sharing” cases [7, 21, 26, 28].
More recently, this notion was generalized to delays char-
acterized in terms of distance on a DAG [8, 9, 10].

The focus of the above works is to find a state-space
representation for the optimal decentralized control law;
there is typically no immediate way of obtaining a mean-
ingful interpretation of the optimal controller states. One
notable exception is [14], where the controller states were
interpreted as minimum mean-squared error (MMSE) es-
timates of the plant states.

An alternative approach is to use a team-theoretic per-
spective. The two-subsystem output feedback problem
was solved in this manner in [15]. We use a similar ap-
proach in the present work to extend the output feed-
back results to a broader class of DAGs. The advantage
of a team-theoretic approach is that structural results
emerge naturally, and one can deduce the optimal con-
troller’s sufficient statistics without solving for gains ex-
plicitly. Indeed, the paper [15] derives structural results
for a finite-horizon formulation with a linear time-varying
plant, whereas the works [11, 12, 13, 14, 25] address linear
time-invariant plants and find the infinite-horizon steady-
state optimal controller.

The paper is organized as follows. We cover notation
and basic assumptions in Section 2, the main results are
presented in Section 3, and we give a proof outline in
Sections 4 and 5. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Basic notation

Real vectors and matrices are represented by lower- and
upper-case letters respectively. Boldface symbols denote
random vectors, and their non-boldface counterparts de-
note particular realizations. xT denotes the transpose of
vector x. E denotes the expectation operator. We write
x = N (µ,Σ) when x is a multivariate Gaussian random
vector with mean µ and covariance Σ.

We consider discrete time stochastic processes over a
finite time interval [0, T ]. Time is indicated using sub-
scripts, and we use the colon notation to denote ranges.
For example: x0∶T−1 = {x0, x1, . . . , xT−1}. In general, all
symbols are time-varying. In an effort to present general
results while keeping equations clear and concise, we in-
troduce a new notation to represent a family of equations.
For example, when we write:

x+
t
= Ax +w,

we mean that xt+1 = Atxt + wt holds for 0 ≤ t ≤ T − 1.
Note that the subscript “+” indicates that we increment
to t + 1 for the associated symbol. We similarly overload
the summation symbol by writing for example

∑
t

xTQx to mean
T−1

∑
t=0

xTt Qtxt

Whenever “t” is written above a binary relation or below
a summation, it is implied that 0 ≤ t ≤ T − 1. There is
no ambiguity because we use the same time horizon T
throughout this paper.

We denote subvectors by using superscripts. Subvec-
tors may also be referenced by using a subset of indices
as superscripts. For example, for a vector

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, if s = {1,3}, we write: xs = x{1,3} = [
x1

x3]
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When writing sub-vectors, we will always arrange the
components in increasing order of indices. Given a collec-
tion of random vectors, we will at times treat the collec-
tion as a concatentation of vectors arranged in increasing
order of node index.

For a matrix A, let Aij denotes its (i, j) block with
dimensions inferred from the context. Given two sets of
indices s and r, As,r is a matrix composed of blocks Aij

with i ∈ s and j ∈ r.

2.2 Graphs

Let G(V,E) be a directed acyclic graph (DAG). The
nodes are labeled 1 to n, so V = {1, . . . , n}. If there is
an edge from i to j, we write (i, j) ∈ E .

We write i → j if there is a directed path from i to
j. That is, if there exists a sequence of nodes v1, . . . , vm
with v1 = i and vm = j such that (vk, vk+1) ∈ E for all k.
By convention, every node has a directed path (of length
zero) to itself. So it is always true that i → i. We write
i ↔ j if i and j are path-connected, that is, if i → j or
j → i. Otherwise, we say they are path-disconnected, and
we write i ↮ j. We can express the path-connectedness
of G using the sparsity matrix, which is the binary matrix
S ∈ {0,1}n×n defined by

Sij =
⎧⎪⎪
⎨
⎪⎪⎩

1 if j → i

0 otherwise

Note that different graphs may have the same sparsity
matrix. In general, S is the adjacency matrix of the tran-
sitive closure of G. So graphs with the same transitive
closure also share the same sparsity matrix.

By convention, we assign a topological ordering to the
node labels. That is, we choose a labeling such that if
j → i, then j ≤ i. This is possible for any DAG [3, §22.4].
Therefore, S is always lower-triangular. For example, the
sparsity matrix for the graph of Figure 1 is given by

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 0 1 0
1 1 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Given a node i ∈ V, we define its ancestors as the set
of nodes that have a directed path to i. Similarly, we
define the descendants as the set of nodes that i can
reach via a directed path. We use the following notation
for ancestors and descendants respectively.

i↑ = {j ∈ V ∶ j → i} i↓ = {j ∈ V ∶ i→ j}

Ancestors and descendants of i always include i itself. We
define the strict ancestors and strict descendants when
we mean to exclude i. Specifically, i⇈ = i↑ ∖ {i} and
i⇊ = i↓ ∖{i}. We use the notation i↕ = i↑ ∪ i↓ for the set of

all nodes that are path-connected to node i. Note that
i↕ is partitioned as i⇈∪{i}∪ i⇊. In the graph of Figure 1,
for example,

3↑ = {1,2,3}, 3⇈ = {1,2}, 3↓ = {3,5},

3⇊ = {5}, 3↕ = {1,2,3,5}

Remark 1. Note that while i↑, i↓, etc. are defined as sub-
sets, it is convenient to think of them as ordered lists in
which the node indices are arranged in increasing order.
Thus, in Figure 1, 3↑ will always be written as {1,2,3}
and not as any other permutation of {1,2,3}.

A node with no strict descendants is called a leaf node
and a node with no strict ancestors is called a root node.

2.3 System model

The system we consider consists of n subsystems that
may affect one another according to the structure of
an underlying DAG, G(V,E). The ith subsystem has
state xi, input ui, measurement yi, process noise wi, and
measurement noise vi. We assume these are discrete-
time random processes that satisfy the following state-
space dynamics for all i ∈ V.

xi
+

t
= ∑

j∈i↑
(Aijx

j +Biju
j) +wi

yi t
= ∑

j∈i↑
(Cijx

j) + vi
(1)

The relative timing of ith state, control action and ob-
servation at time t is as shown in Figure 2. Note that
the observation yi

t is generated after control action ui
t is

taken. Each of the matrices in (1) may be time-varying,

t t + 1

xi
t ui

t yi
t

Figure 2: Relative timing of state, action and observation
at time t.

and may even change dimensions with time. In an effort
to make our notation more concise, we concatenate the
various symbols above and simply write

x+
t
= Ax +Bu +w

y
t
= Cx + v

(2)

In this condensed notation, the matrices A, B, and C
have blocks that conform to S, the sparsity matrix for
G(V,E). In other words, if Sij = 0 then Aij = 0, Bij = 0,
and Cij = 0. The random vectors in the collection

{x0, [
w0

v0
] , . . . , [

wT−1

vT−1
]} (3)
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are referred to as the primitive random variables and are
mutually independent and jointly Gaussian with the fol-
lowing known probability density functions

x0 = N (0,Σinit)

[
w
v
]

t
= N(0, [

W UT

U V
])

(4)

There are n controllers, one responsible for each of the ui,
i = 1, . . . , n. We define the locally generated information
at node i at time t as

iit ∶= {yi
0∶t−1,u

i
0∶t−1} (5)

The information available to controller i at time t is

ii
↑

t ∶= ⋃
j∈i↑

ijt = ⋃
j∈i↑

{yj
0∶t−1,u

j
0∶t−1}. (6)

In other words, each controller knows the past measure-
ments and decisions of its ancestors. So the directed
edges of G may be thought of as representing the flow
of information between subsystems. Crucially, the same
graph G represents both how the dynamics propagate as
well as how information is shared in the system. The
controllers select actions according to a control strategy
f i ∶= (f i0, f

i
1, . . . , f

i
T−1) for i ∈ V. That is,

ui
t = f

i
t ( ii

↑

t ) for 0 ≤ t ≤ T − 1 (7)

Given a control strategy profile f = (f1, f2, . . . , fn),
performance is measured by the finite horizon expected
quadratic cost

Ĵ0(f) = Ef(∑
t

[
x
u
]

T

[
Q S
ST R

] [
x
u
] + xT

TPfinalxT) (8)

Expectation is taken with respect to the joint probability
measure on (x0∶T ,u0∶T−1) induced by the choice of f .

It is assumed that all system parameters are univer-
sally known. Specifically, Σinit, Pfinal, as well as the val-
ues of A,B,C,Q,R,S,U,V,W for all t, are known by all
controllers.

2.4 Assumptions

In addition to the problem specifications (2)–(8), we will
make some additional assumptions about the underly-
ing DAG and the noise and cost parameters used in (4)
and (8) respectively. First, we require some definitions.

Definition 1 (multitree). The nodes i, a, b, j ∈ V form
a diamond if i → a → j and i → b → j, and a ↮ b.
A multitree is a directed acyclic graph that contains no
diamonds.

For example, the graph of Figure 1 is a multitree. How-
ever, if we add the edge (4,5), then the nodes (2,3,4,5)
form a diamond and the graph ceases to be a multitree.

Definition 2 (decoupled cost). Define the set X =
{Q0∶T−1,R0∶T−1, S0∶T−1, Pfinal} of matrices associated with
the cost function. We say that nodes i, j ∈ V have
decoupled cost if Xij = 0 for all X ∈ X .

Definition 3 (uncorrelated noise). Define the set Y =
{W0∶T−1, V0∶T−1, U0∶T−1,Σinit} of matrices associated with
the noise and initial state statistics. We say that nodes
i, j ∈ V have uncorrelated noise if Yij = 0 for all Y ∈ Y.

The notions of decoupled cost and uncorrelated noise
have intuitive interpretations. If two nodes have decou-
pled cost, then the instantaneous cost at any time has no
cross-terms that involve both nodes. If two nodes have
uncorrelated noise, then the process and measurement
noises affecting one node are statistically independent of
those affecting the other. Our assumptions are as follows.

(A1) The DAG G(V,E) is a multitree.

(A2) For every pair of nodes i, j ∈ V,

• If the pair of nodes has no common ancestor, then
they have uncorrelated noise.

• If the pair of nodes has no common descendants,
then they have decoupled costs.

For the graph of Figure 1, nodes 1 and 4 have neither a
common ancestor nor a common descendant. Therefore,
Assumption A2 would require that this pair of nodes have
both decoupled cost and uncorrelated noise.

Note that because of the multitree assumption, the
only way i and j can have both a common ancestor and
a common descendant is if i ↔ j. Assumption A2 may
be expressed in terms of the sparsity pattern S using the
following observations

1. (SST)ij = 0 if and only if i↑ ∩ j↑ = ∅; in other words,
if and only if i and j have no common ancestor.

2. (STS)ij = 0 if and only if i↓ ∩ j↓ = ∅; in other words,
if and only if i and j have no common descendant.

So Assumption A2 may be stated concisely as follows: all
matrices in X (see Definition 2) have the same sparsity
as STS and all matrices in Y (see Definition 3) have the
same sparsity as SST. For the graph of Figure 1, these
sparsity patterns are

SST ∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1
0 1 1 1 1
1 1 1 1 1
0 1 1 1 1
1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

STS ∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 1
1 1 1 1 1
1 1 1 0 1
0 1 0 1 0
1 1 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remark 2. Note that Assumption A2 is more general
than assuming that all cost matrices in X and covariance
matrices in Y are block-diagonal.
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3 Main results

The problem addressed in this paper is the following.

Problem 1 (n-player LQG). For the model (2)–(7),
and subject to Assumptions A1 and A2 , find a control
strategy profile f = (f1, f2, . . . , fn) that minimizes the
expected cost (8).

The information structure of our problem is partially
nested and therefore, without loss of optimality, we will
restrict attention to linear control strategies [4]. The
main result of this paper is a description of sufficient
statistics required for an optimal solution of Problem 1.

Theorem 1 (Control Result). In Problem 1, there is no
loss in optimality in jointly restricting all nodes i ∈ V to
strategies of the form

ui
t = ∑

j∈i↑
Kij

t zj
↕

t (9)

where zj
↕

t ∶= E(xj↕

t ∣ ij
↑

t ).

Note that zj
↕

t is the conditional mean of the state of
all nodes that are path-connected to node j based on
the information available to node j (recall the notation
introduced in Section 2.2).

Recall that ii
↑

t defined in (5)–(6) is the information
available to node i at time t, and this set grows with time
as more measurements are observed and more decisions
are made. Theorem 1 states that controllers need not
remember this entire information history. Instead, each

node j may compute the aggregated statistic zj
↕

, which
is an estimate of the current states of its ancestors and
descendants. The optimal decision at node i, ui, is then
a linear function of all such estimates maintained by the
ancestors of node i.

Our second result addresses the evolution of the esti-
mates zj

↕

t . Before we state this result, we define the set
of matrices Ei,j .

Definition 4. Consider nodes i and j with i ∈ j⇊. Let
i↕ = {k1, k2, . . . , k∣i↕∣} and j↕ = {l1, l2, . . . , l∣j↕∣}. Define a

matrix Ei,j with ∣i↕∣ block rows and ∣j↕∣ block columns as
follows: For a = 1,2, . . . , ∣i↕∣,

1. If ka ∉ j
↕, then the ath block row of Ei,j is 0.

2. If ka ∈ j
↕ and ka = lb, then the (a, b) block of Ei,j is

identity and the rest of ath block row is 0.

For example, in Figure 1, we have 3↕ = {1,2,3,5} and
2↕ = {2,3,4,5}. Consequently,

E3,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
I 0 0 0
0 I 0 0
0 0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We now state our second result.

Theorem 2 (Estimation Result). If the control strategy

is as given in Theorem 1, then the evolution of zj
↕

t is
described as follows:

zj
↕

0 = 0

zj
↕

+

t
= Aj↕j↕zj

↕

+Bj↕j↕ [
uj↑

{ûij}i∈j⇊
] −Lj (yj↑ −Cj↑j↑zj

↑

)

(10)
for some matrices Lj

0∶T−1, with

ûij ∶
t
= ∑

a∈j↑
Kiaza

↕

+ ∑
b∈i↑∩j⇊

KibEb,jzj
↕

for i ∈ j⇊ (11)

Remark 3. For linear control strategies described by
Theorem 2, the quantity ûij

t as defined in (11) is in fact

equal to E(ui
t ∣ i

j↑

t ).

The above theorems provide finite dimensional suffi-
cient statistics for all controllers in the system. These
results should be viewed as structural results of optimal
control strategies since they postulate the existence of
optimal controllers and estimators of the form presented
above without specifying how the matrices Kij , Lj used
in control and estimation can be computed.

4 Proof outline of Theorem 1 for the
system in Figure 1

Our proof technique may be thought of as a sequence of
refinements that traverses the underlying DAG starting
from the leaf nodes and finishing at the root nodes.

Due to space limitations, we will present a proof outline
of Theorem 1 as applied to the system shown in Figure 1.
The most basic structural form of control strategies for
the system illustrated in Figure 1 is simply our initial

information constraint (7), namely, ui
t = f it ( ii

↑

t ). We
refine this structural form in the following steps:

1. Leaf nodes 4 and 5: We consider a single leaf node
(say node 4) and fix arbitrary linear control strategies for
all nodes except node 4. We will consider the problem of
finding the best control strategy for node 4 in response
to the arbitrary choice of linear control strategies of all
other controllers. This is a centralized control problem
for which we can derive a structural result by identify-
ing a suitable state description for the overall system as
seen by node 4. With fixed linear strategies for all other
nodes, the overall system can be viewed as a LQG system
with x1,2,3,4,5

t , i1,2,3,5t as the state vector and y2,4
t ,u2

t as
the observation vector. Because of the structure of the
graph and the sparsity assumptions on the cost matrices,
the dynamics and the cost terms associated with nodes
1, 3, 5 are decoupled from the dynamics and costs asso-
ciated with node 4. Therefore, for node 4’s centralized
problem, it suffices to consider x2,4

t , i2t as the state. From
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standard LQG theory [6], it follows that node 4 can use
a linear control law that is a function of its estimate of
state vector x2,4

t , i2t . That is, node 4’s linear control law
is of the form

u4
t = g

4
t (z

4↑

t ) + h42
t (i2t ) (12)

where z4↑

t ∶= E(x2,4
t ∣ i2,4t ). A similar argument for node 5

yields the structure

u5
t = g

5
t (z

5↑

t ) + h5
t (i

1,2,3
t )

= g5
t (z

5↑

t ) + h51
t (i1t ) + h

52
t (i2t ) + h

53
t (i3t ) (13)

where z5↑

t ∶= E(x1,2,3,5
t ∣ i1,2,3,5t ).

2. Parent of leaf nodes; node 3: Next we consider
nodes with only leaf nodes as children. In Figure 1, the
only such node is node 3. We fix arbitrary linear strate-
gies for nodes 1 and 2. For node 4, we pick any strategy
that has the structural form (12) identified in Step 1. We
turn our attention to optimizing strategies for node 3 and
its descendant, node 5. From Step 1, we know that

u3
t = f

3
t (i

1,2,3
t )

u5
t = g

5
t (z

5↑

t ) + h5
t (i

1,2,3
t ) (14)

We consider arbitrary choices for functions g5
0∶T−1 in (14)

and focus on the joint optimization of f3
0∶T−1 and h5

0∶T−1.
The key thing to note here is that both f3

t and h5
t are

functions of information available to node 3. Therefore,
we will introduce a fictitious coordinator for nodes 3
and 5 that knows i1,2,3t and selects two decisions:

u3
t = f

3
t (i

1,2,3
t )

ũ53
t = h5

t (i
1,2,3
t )

so that the control action at node 5 can be written as

u5
t = g

5
t (z

5↑

t ) + ũ53
t (15)

We now consider the centralized problem of how this co-
ordinator should optimally make its decisions.

With strategies (or parts of strategies) of other con-
trollers fixed, the overall system can be viewed as a
LQG system from the coordinator’s perspective with

x1,2,3,4,5
t , i1,2t ,z4↑

t ,z
5↑

t as the state vector and y1,3
t ,u1

t as
the observation vector. Because of the structure of the
graph and the sparsity assumptions on the cost matrices,
the dynamics and the cost terms associated with nodes
1,3,5 are decoupled from the dynamics and costs associ-
ated with node 4. Therefore, for the coordinator’s cen-

tralized problem, it suffices to consider x1,2,3,5
t , i1,2t ,z5↑

t as
the state. Using the same argument as in Step 1, it suf-
fices that the coordinator estimate this new state. The
estimate of z5↑

t can be written as

E(z5↑

t ∣ i1,2,3t ) = E(E(x1,2,3,5
t ∣ i1,2,3,5t ) ∣ i1,2,3t ) (16)

By the smoothing property of conditional expectation,

E(z5↑

t ∣ i1,2,3t ) = E(x1,2,3,5
t ∣ i1,2,3t ) (17)

Therefore, the fictitious coordinator’s optimal strategy
can be written as

u3
t = g

3
t (z

3↕

t ) + h31
t (i1t ) + h

32
t (i2t )

ũ53
t = g53

t (z3↕

t ) + h51
t (i1t ) + h

52
t (i2t ) (18)

where z3↕

t = E(x1,2,3,5
t ∣ i1,2,3t ). Combining (15) with (18)

yields the following structure for u3
t and u5

t

u3
t = g

3
t (z

3↕

t ) + h31
t (i1t ) + h

32
t (i2t )

u5
t = g

5
t (z

5↑

t ) + g53
t (z3↕

t ) + h51
t (i1t ) + h

52
t (i2t )

3. Root nodes 1 and 2: Finally, we consider the
roots nodes 1 and 2. We start with node 2. We fix arbi-
trary linear strategies for node 1 and focus on optimizing
strategies for node 2 and its descendants. Collecting the
results from Steps 1 and 2, we have

u2
t = f

2
t (i

2
t ) (19a)

u3
t = g

3
t (z

3↕

t ) + h31
t (i1t ) + h

32
t (i2t ) (19b)

u4
t = g

4
t (z

4↑

t ) + h42
t (i2t ) (19c)

u5
t = g

5
t (z

5↑

t ) + g53
t (z3↕

t ) + h51
t (i1t ) + h

52
t (i2t ) (19d)

Fix arbitrary choices for g3
t , g

4
t , g

5
t , h

31
t , h

51
t , t = 0, . . . , T −1

and focus on the joint optimization of f2
t , h

32
t , h

42
t , h

52
t

for each t = 0, . . . , T − 1. Note that all the functions
being optimized here are functions of i2t , the information
available to node 2. As in Step 2, introduce a coordinator
for nodes 2, 3, 4, 5 that knows i2t and selects

u2
t = f

2
t (i

2
t ) ũ42

t = h42
t (i2t )

ũ32
t = h32

t (i2t ) ũ52
t = h52

t (i2t )
(20)

With strategies (or parts of strategies) of other con-
trollers fixed, the overall system can be viewed as a
LQG system from the new coordinator’s perspective with

x1,2,3,4,5
t , i1t ,z

3↕

t ,z
4↑

t ,z
5↑

t as the state vector and y2
t as the

observation vector. It suffices for the coordinator to esti-
mate this state. We now make the following observation:

a) Because of the sparsity assumption about noise statis-
tics (see Assumption A2), x1

t , i
1
t are independent of

the coordinator’s information i2t at time t. Therefore,
E(x1

t ∣ i
2
t ) = 0 and E(i1t ∣ i

2
t ) = 0.

b) The coordinator’s estimate of z4↑

t can be written as

E(z4↑

t ∣ i2t ) = E(E(x2,4
t ∣ i2,4t ) ∣ i2t ) = E(x2,4

t ∣ i2t ) (21)

c) The coordinator’s estimate of z3↕

t can be written as

E(z3↕

t ∣ i2t ) = E(E(x1,2,3,5
t ∣ i1,2,3t ) ∣ i2t ) = E(x1,2,3,5

t ∣ i2t )

(22)
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Furthermore,

E(x1,2,3,5
t ∣ i2t )

= E(x1,2,3,5
t −E3,2x2,3,4,5

t ∣ i2t ) +E(E3,2x2,3,4,5
t ∣ i2t )

= E([x1
t 0 0 0]

T
∣ i2t) +E

3,2 E(x2,3,4,5
t ∣ i2t )

= 0 +E3,2 E(x2,3,4,5
t ∣ i2t ) (23)

d) Similarly,

E(z5↑

t ∣ i2t ) = E
5,2 E(x2,3,4,5

t ∣ i2t ) (24)

Based on (21)–(24), we observe that the estimate of
the new coordinator’s state ultimately only depends on
E(x2,3,4,5

t ∣ i2t ). Therefore, (20) can be refined to

u2
t = f

2
t (z

2↕

t ) ũ42
t = g42

t (z2↕

t )

ũ32
t = g32

t (z2↕

t ) ũ52
t = g52

t (z2↕

t )
(25)

where z2↕

t = E(x2,3,4,5
t ∣ i2t ). Now merge (25) with (19) and

obtain the following structure for u2
t , u3

t , u4
t , u5

t

u2
t = g

2
t (z

2↕

t ) (26a)

u3
t = g

3
t (z

3↕

t ) + g32
t (z2↕

t ) + h31
t (i1t ) (26b)

u4
t = g

4
t (z

4↑

t ) + g42
t (z2↕

t ) (26c)

u5
t = g

5
t (z

5↑

t ) + g52
t (z2↕

t ) + g53
t (z3↕

t ) + h51
t (i1t ) (26d)

Repeating a similar argument for node 1 establishes the
final structural result for all nodes.

u1
t = g

1
t (z

1↕

t ) (27a)

u2
t = g

2
t (z

2↕

t ) (27b)

u4
t = g

4
t (z

4↑

t ) + g42
t (z2↕

t ) (27c)

u3
t = g

3
t (z

3↕

t ) + g31
t (z1↕

t ) + g32
t (z2↕

t ) (27d)

u5
t = g

5
t (z

5↑

t ) + g51
t (z1↕

t ) + g52
t (z2↕

t ) + g53
t (z3↕

t ) (27e)

Observing that all functions in (27) are linear and there-
fore can be written in terms of matrices yields the result
of Theorem 1 for the system of Figure 1.

5 Proof outline of Theorem 2

The steps 1–3 in the proof of Theorem 1 invoke the cen-
tralized structural result from standard LQG theory [6];
a sufficient statistic for the optimal controller is the con-
ditional mean of the state. But the centralized theory
also provides a recursive formulation for the conditional
mean (the Kalman filter). Theorem 2 can be proved by
augmenting the proof of Theorem 1 to include these es-
timator recursions at every step. We provide an outline
below and refer the reader to [16] for a detailed proof.

Consider first a leaf node, say node 4. This node needs

to evaluate z4↑

t ∶= E(x2,4
t ∣ i2,4t ). The structure of the graph

implies that the states of nodes 2 and 4, x2,4
t , evolve

according to the following dynamics:

x2
+

t
= A22x

2 +B22u
2 +w2 (28a)

x4
+

t
= A42x

2 +A44x
4 +B42u

2 +B44u
4 +w4 (28b)

y2 t
= C22x

2 + v2 (28c)

y4 t
= C42x

2 +C44x
4 + vi (28d)

Computing the estimator of these states based on i2,4t =
{y2,4

0∶t−1,u
2,4
0∶t−1} is a standard Kalman estimation problem

with a recursive update equation that agrees with the
result of Theorem 2 for j = 4. The estimates at the other
leaf node, node 5, can be handled in a similar manner.

Now focus on node 3’s estimate z3↕

t ∶= E(x1,2,3,5
t ∣ i1,2,3t ).

The difficulty in updating this estimate is that the dy-
namics of x5

t depend on node 5’s control action which
node 3 does not fully know. Because of Theorem 1, the
action of node 5 can be written as

u5
t =K

55
t z5↑

t +K53
t z3↕

t +K52
t z2↕

t +K51
t z5↕

t (29)

The last three terms in (29) are based on information
available to node 3 and are therefore computable by
node 3. To estimate u5

t , therefore, node 3 needs to esti-
mate the first term. As we saw in proof of Theorem 1,

E(z5↑

t ∣ i1,2,3t ) = E(x1,2,3,5
t ∣ i1,2,3t ) = z3↕

t (30)

Using the above observations, we can derive the following

update equation for z3↕

t :

z3↕

+

t
= A3↕3↕z3↕ +B3↕3↕ [

u3↑

û53] −L
3 (y3↑ −C3↑3↑z3↑) (31)

for some matrices L3
0∶T−1, with

û53 t
=K55

t z3↑

t +K53
t z3↕

t +K52
t z2↕

t +K51
t z5↕

t . (32)

Equation (32) agrees with the statement of Theorem 2
for j = 3.

We proceed in a similar manner for the root nodes 1
and 2. Node 2, for example, needs to update its estimate

z2↕

t = E(x2,3,4,5
t ∣ i2t ). In order to do so, it needs to esti-

mate the actions of all its descendants. Thus, it needs
to estimate the estimates of nodes 1,3,4,5. Observe that

E(z1↕

t ∣ i2t ) = 0 because of our assumptions about noise
statistics (Assumption A2). Finally, as in the proof of

Theorem 1, E(zi
↕

t ∣ i2t ) for i = 3,4,5 can be obtained as

functions of z2↕

t . Combining these observations yields the

update equation for z2↕

t .
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6 Concluding remarks

In this paper, we described a broad class of decentralized
output feedback LQG control problems that admit simple
and intuitive sufficient statistics.

In our ongoing work, we take the results of the present
paper one step further and derive an explicit and effi-
ciently computable state-space representation for the op-
timal controller. As with centralized LQG control prob-
lems, the optimal estimation and control gains may be
computed offline, and the computational complexity is
similar as well.
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