Stop the alien invasion!

Today’s puzzle is from The Riddler, and has to do with spherical geometry.

A guardian constantly patrols a spherical planet, protecting it from alien invaders that threaten its very existence. One fateful day, the sirens blare: A pair of hostile aliens have landed at two random locations on the surface of the planet. Each has one piece of a weapon that, if combined with the other piece, will destroy the planet instantly. The two aliens race to meet each other at their midpoint on the surface to assemble the weapon. The guardian, who begins at another random location on the surface, detects the landing positions of both intruders. If she reaches them before they meet, she can stop the attack.

The aliens move at the same speed as one another. What is the probability that the guardian saves the planet if her linear speed is 20 times that of the aliens’?

Here is my solution for the case of interest, where the guardian is faster than the intruders.
[Show Solution]

Here is a partial solution for the more complicated case where the guardian is slower than the intruders.
[Show Solution]

Cutting polygons in half

This Riddler puzzle is about cutting polygons in half. Here is the problem:

The archvillain Laser Larry threatens to imminently zap Riddler Headquarters (which, seen from above, is shaped like a regular pentagon with no courtyard or other funny business). He plans to do it with a high-powered, vertical planar ray that will slice the building exactly in half by area, as seen from above. The building is quickly evacuated, but not before in-house mathematicians move the most sensitive riddling equipment out of the places in the building that have an extra high risk of getting zapped.

Where are those places, and how much riskier are they than the safest spots? (It’s fine to describe those places qualitatively.)

Extra credit: Get quantitative! Seen from above, how many high-risk points are there? If there are infinitely many, what is their total area?

Here is my solution:
[Show Solution]

And here is a bonus interactive graphic showing the solution

The puzzle of the picky eater

Today’s Riddler post is a neat problem about calculating areas.

Every morning, before heading to work, you make a sandwich for lunch using perfectly square bread. But you hate the crust. You hate the crust so much that you’ll only eat the portion of the sandwich that is closer to its center than to its edges so that you don’t run the risk of accidentally biting down on that charred, stiff perimeter. How much of the sandwich will you eat?

Extra credit: What if the bread were another shape — triangular, hexagonal, octagonal, etc.? What’s the most efficient bread shape for a crust-hater like you?

Here is my solution:
[Show Solution]

Overflowing martini glass

This Riddler puzzle is all about conic sections.

You’ve kicked your feet up and have drunk enough of your martini that, when the conical glass (🍸) is upright, the drink reaches some fraction p of the way up its side. When tipped down on one side, just to the point of overflowing, how far does the drink reach up the opposite side?

Here is my solution:
[Show Solution]