Flipping your way to victory

This week’s Riddler Classic concerns a paradoxical coin-flipping game:

You have two fair coins, labeled A and B. When you flip coin A, you get 1 point if it comes up heads, but you lose 1 point if it comes up tails. Coin B is worth twice as much — when you flip coin B, you get 2 points if it comes up heads, but you lose 2 points if it comes up tails.

To play the game, you make a total of 100 flips. For each flip, you can choose either coin, and you know the outcomes of all the previous flips. In order to win, you must finish with a positive total score. In your eyes, finishing with 2 points is just as good as finishing with 200 points — any positive score is a win. (By the same token, finishing with 0 or −2 points is just as bad as finishing with −200 points.)

If you optimize your strategy, what percentage of games will you win? (Remember, one game consists of 100 coin flips.)

Extra credit: What if coin A isn’t fair (but coin B is still fair)? That is, if coin A comes up heads with probability p and you optimize your strategy, what percentage of games will you win?

Here is my solution:
[Show Solution]

Penny Pinching

This week’s Riddler Classic is indeed a classic! Here it goes (paraphrased to make it a bit more general):

The game starts with $n$ pennies, which I then divide into two piles any way I like. Then we alternate taking turns, with you first, until someone wins the game. For each turn, a player may take any number of pennies he or she likes from either pile, or instead take the same number of pennies from both piles. Each player must also take at least one penny every turn. The winner of the game is the one who takes the last penny.

If we both play optimally, what starting numbers of pennies guarantee that you can win the game?

Here is my solution:
[Show Solution]

Delirious ducks

This week’s Riddler Classic is about random walks on a lattice:

Two delirious ducks are having a difficult time finding each other in their pond. The pond happens to contain a 3×3 grid of rocks.

Every minute, each duck randomly swims, independently of the other duck, from one rock to a neighboring rock in the 3×3 grid — up, down, left or right, but not diagonally. So if a duck is at the middle rock, it will next swim to one of the four side rocks with probability 1/4. From a side rock, it will swim to one of the two adjacent corner rocks or back to the middle rock, each with probability 1/3. And from a corner rock, it will swim to one of the two adjacent side rocks with probability 1/2.

If the ducks both start at the middle rock, then on average, how long will it take until they’re at the same rock again? (Of course, there’s a 1/4 chance that they’ll swim in the same direction after the first minute, in which case it would only take one minute for them to be at the same rock again. But it could take much longer, if they happen to keep missing each other.)

Extra credit: What if there are three or more ducks? If they all start in the middle rock, on average, how long will it take until they are all at the same rock again?

Here is my solution:
[Show Solution]

Mismatched socks

This week’s Riddler Classic is a problem familiar to many…

I have $n$ pairs of socks in a drawer. Each pair is distinct from another and consists of two matching socks. Alas, I’m negligent when it comes to folding my laundry, and so the socks are not folded into pairs. This morning, fumbling around in the dark, I pull the socks out of the drawer, randomly and one at a time, until I have a matching pair of socks among the ones I’ve removed from the drawer.

On average, how many socks will I pull out of the drawer in order to get my first matching pair?

Here is my solution:
[Show Solution]

Prismatic puzzle

This week’s Riddler Classic is simple to state, but tricky to figure out:

What whole number dimensions can rectangular prisms have so that their volume (in cubic units) is the same as their surface area (in square units)?

Here is my solution:
[Show Solution]

Optimal HORSE

This week’s Riddler Classic is about how to optimally play HORSE — the playground shot-making game. Here is the problem.

Two players have taken to the basketball court for a friendly game of HORSE. The game is played according to its typical playground rules, but here’s how it works, if you’ve never had the pleasure: Alice goes first, taking a shot from wherever she’d like. If the shot goes in, Bob is obligated to try to make the exact same shot. If he misses, he gets the letter H and it’s Alice’s turn to shoot again from wherever she’d like. If he makes the first shot, he doesn’t get a letter but it’s again Alice’s turn to shoot from wherever she’d like. If Alice misses her first shot, she doesn’t get a letter but Bob gets to select any shot he’d like, in an effort to obligate Alice. Every missed obligated shot earns the player another letter in the sequence H-O-R-S-E, and the first player to spell HORSE loses.

Now, Alice and Bob are equally good shooters, and they are both perfectly aware of their skills. That is, they can each select fine-tuned shots such that they have any specific chance they’d like of going in. They could choose to take a 99 percent layup, for example, or a 50 percent midrange jumper, or a 2 percent half-court bomb.

If Alice and Bob are both perfect strategists, what type of shot should Alice take to begin the game?

What types of shots should each player take at each state of the game — a given set of letters and a given player’s turn?

Here is how I solved the problem:
[Show Solution]

and here is the solution:
[Show Solution]

Quarter flipping on a spinning table

This week’s Riddler Classic is a simple-sounding problem about statistics. But it’s not so simple! Here is a paraphrased version of the problem:

There is a square table with a quarter on each corner. The table is behind a curtain and thus out of your view. Your goal is to get all of the quarters to be heads up — if at any time all of the quarters are heads up, you will immediately be told and win.

The only way you can affect the quarters is to tell the person behind the curtain to flip over as many quarters as you would like and in the corners you specify. (For example, “Flip over the top left quarter and bottom right quarter,” or, “Flip over all of the quarters.”) Flipping over a quarter will always change it from heads to tails or tails to heads. However, after each command, the table is spun randomly to a new orientation (that you don’t know), and you must give another instruction before it is spun again.

Can you find a series of steps that guarantees you will have all of the quarters heads up in a finite number of moves?

Here is my solution:
[Show Solution]

Tank counting

This week’s Riddler Classic is a simple-sounding problem about statistics. But it’s not so simple! Here is a paraphrased version of the problem:

There are $n$ tanks, labeled $\{1,2,\dots,n\}$. We are presented with a sample of $k$ tanks, chosen uniformly at random, and we observe that the smallest label among the sample is $22$ and the largest label is $114$. Both $n$ and $k$ are unknown. What is our best estimate of $n$?

Here is a short introduction on parameter estimation, for the curious:
[Show Solution]

Here is my solution to the problem:
[Show Solution]

Thanos snaps

This week’s Riddler Express problem is a nod to the recently released finale to the Avengers saga. No spoilers!

Thanos, the all-powerful supervillain, can snap his fingers and destroy half of all the beings in the universe.

But what if there were 63 Thanoses, each snapping his fingers one after the other? Out of 7.5 billion people on Earth, how many can we expect would survive?

If there were N Thanoses, what would the survival fraction be?

Here is my solution:
[Show Solution]

Circular conundrum

This week’s Riddler problem is short and sweet:

If N points are generated at random places on the perimeter of a circle, what is the probability that you can pick a diameter such that all of those points are on only one side of the newly halved circle?

Here is my solution:
[Show Solution]