Vehicular trouble

This week’s Riddler Classic is about steady-state mixing of fluids. Here is the paraphrased problem.

Your old van holds 12 quarts of transmission fluid. At the moment, all 12 quarts are “old.” But changing all 12 quarts at once carries a risk of transmission failure. Instead, you decide to replace the fluid a little bit at a time. Each month, you remove one quart of old fluid, add one quart of fresh fluid and then drive the van to thoroughly mix up the fluid. Unfortunately, after precisely one year of use, what was once fresh transmission fluid officially turns “old.” You keep up this process for many, many years. One day, immediately after replacing a quart of fluid, you decide to check your transmission. What percent of the fluid is old?

Here is my solution:
[Show Solution]

Inscribed hexagons

This week’s Riddler Classic is a geometry problem involving inscribed hexagons.

The larger regular hexagon in the diagram below has a side length of 1. What is the side length of the smaller regular hexagon?
If you look very closely, there are two more, even smaller hexagons on top. What are their side lengths?

Here is my solution:
[Show Solution]

Optimal Wordle

This week’s Riddler Classic is about the viral word game Wordle.

Find a strategy that maximizes your probability of winning Wordle in at most three guesses.

Here is my solution:
[Show Solution]

Triangle Trek

This week’s Riddler Classic is a problem involving traversing a triangle.

Amare the ant is traveling within Triangle ABC, as shown below. Angle A measures 15 degrees, and sides AB and AC both have length 1.

Amare must:

  • Start at point B.
  • Second, touch a point — any point — on side AC.
  • Third, touch a point — any point — back on side AB.
  • Finally, proceed to a point — any point — on side AC (not necessarily the same point he touched earlier).

What is the shortest distance Amare can travel to complete the desired path?

I solved the problem in two different ways. The elegant solution:
[Show Solution]

And the more complicated solution:
[Show Solution]

Squid game

This week’s Riddler Classic is Squid Game-themed!

There are 16 competitors who must cross a bridge made up of 18 pairs of separated glass squares. Here is what the bridge looks like from above:

To cross the bridge, each competitor jumps from one pair of squares to the next. However, they must choose one of the two squares in a pair to land on. Within each pair, one square is made of tempered glass, while the other is made of normal glass. If you jump onto tempered glass, all is well, and you can continue on to the next pair of squares. But if you jump onto normal glass, it will break, and you will be eliminated from the competition.

The competitors have no knowledge of which square within each pair is made of tempered glass. The only way to figure it out is to take a leap of faith and jump onto a square. Once a pair is revealed — either when someone lands on a tempered square or a normal square — all remaining competitors take notice and will choose the tempered glass when they arrive at that pair.

On average, how many of the 16 competitors will make it across the bridge?

Here is my solution.
[Show Solution]

And here is a much better solution!
[Show Solution]

Evil twin

This week’s Riddler Classic is a pursuit problem with a twist. Here is the problem, paraphrased.

You are walking in a straight line (moving forward at all times) near a lamppost. Your evil twin begins opposite you, hidden from view by the lamppost, as illustrated in the figure below.

Assume your evil twin moves precisely twice as fast as you at all times, and they remain obscured from your view by the lamppost at all times. What is the farthest your evil twin can be from the lamppost after you’ve walked the 200 feet as shown?

Here is my solution.
[Show Solution]

Perfect pursuit

This week’s Riddler Classic is about catching

Hames Jarrison has just intercepted a pass at one end zone of a football field, and begins running — at a constant speed of 15 miles per hour — to the other end zone, 100 yards away.

At the moment he catches the ball, you are on the very same goal line, but on the other end of the field, 50 yards away from Jarrison. Caught up in the moment, you decide you will always run directly toward Jarrison’s current position, rather than plan ahead to meet him downfield along a more strategic course.

Assuming you run at a constant speed (i.e., don’t worry about any transient acceleration), how fast must you be in order to catch Jarrison before he scores a touchdown?

Here is the solution.
[Show Solution]

For a detailed derivation (warning: calculus!) click below.
[Show Solution]

Tetrahedron optimization

This week’s Riddler Classic is a short problem 3D geometry. Here we go! (I paraphrased the question)

A polyhedron has six edges. Five of the edges have length $1$. What is the largest possible volume?

Here is my solution
[Show Solution]

Infinite cake

This week’s Riddler Express is a short problem about infinite series. Let’s dig in! (I paraphrased the question)

You and your infinitely many friends are sharing a cake, and you come up with several different methods of splitting it.

  1. Friend 1 takes half of the cake, Friend 2 takes a third of what remains, Friend 3 takes a quarter of what remains after Friend 2, Friend 4 takes a fifth of what remains after Friend 3, and so on.
  2. Friend 1 takes $1/2^2$ (or one-quarter) of the cake, Friend 2 takes $1/3^2$ (or one-ninth) of what remains, Friend 3 takes $1/4^2$ of what remains after Friend 3, and so on.
  3. Same as previous, with even denominators only: Friend 1 takes $1/2^2$ of the cake, Friend 2 takes $1/4^2$ of what remains, Friend 3 takes $1/6^2$ of what remains after Friend 2, and so on.

For each of these methods, after your infinitely many friends take their respective pieces, how much cake is left?

Here is my solution
[Show Solution]

Definitive diffidence

This week’s Riddler Classic is an interesting back-and forth game trying to guess whose number is larger.

Martina and Olivia each secretly generate their own random real number, selected uniformly between 0 and 1. Starting with Martina, they take turns declaring (so the other can hear) who they think probably has the greater number until the first moment they agree. Throughout this process, their respective numbers do not change. So for example, their dialogue might go as follows:

Martina: My number is probably bigger.

Olivia: My number is probably bigger.

Martina: My number is probably bigger.

Olivia: My number is probably bigger.

Martina: Olivia’s number is probably bigger.

They are playing as a team, hoping to maximize the chances they correctly predict who has the greater number.

For any given round with randomly generated numbers, what is the probability that the person they agree on really does have the bigger number?

Extra credit: Martina and Olivia change the rules so that they stop when Olivia first says that she agrees with Martina. That is, if Martina says on her turn that she agrees with Olivia, that is not a condition for stopping. Again, if they play to maximizing their chances, what is the probability that the person they agree on really does have the bigger number?

Here is my solution
[Show Solution]